



## Formation of stratospheric nitric acid by a hydrated ion cluster reaction: implications for the effect of energetic particle precipitation on the middle atmosphere

Y. Orsolini (1), O.-K. Kvissel (2), F. Stordal (2), I. Isaksen (2), and M. Santee (3)

(1) NILU-Norwegian Institute for Air Research, Kjeller, Norway (orsolini@nilu.no), (2) Department of Geosciences, University of Oslo, Oslo, Norway (Ole.Kristian.Kvissel@klif.no), (3) Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA

Enhancements in nitric acid ( $\text{HNO}_3$ ) are often observed in satellite or ground-based data in the winter polar upper stratosphere, and are thought to be linked to energetic particle precipitation. These enhancements are poorly represented in chemistry-climate models. In order to improve this effect of energetic particle precipitation, we have modelled the chemical and dynamical middle atmosphere response to the introduction of a chemical pathway that produces  $\text{HNO}_3$  by conversion of  $\text{N}_2\text{O}_5$  upon hydrated water clusters  $\text{H}+\bullet(\text{H}_2\text{O})_n$ . We have used an ensemble of simulations with the National Center for Atmospheric Research (NCAR) Whole-Atmosphere Community Climate Model (WACCM) chemistry-climate model. The chemical pathway alters the internal partitioning of the  $\text{NO}_y$  family during winter months in both hemispheres, and ultimately triggers statistically significant changes in the climatological distributions of constituents including: i) a cold season production and loss of  $\text{HNO}_3$  and  $\text{N}_2\text{O}_5$ , respectively, and ii) a cold season decrease and increase in  $\text{NO}_x/\text{NO}_y$ -ratio and  $\text{O}_3$ , respectively, in the polar regions of both hemispheres. We see an improved seasonal evolution of modelled  $\text{HNO}_3$  compared to satellite observations from Microwave Limb Sounder (MLS), albeit not enough  $\text{HNO}_3$  is produced at high altitudes. Through  $\text{O}_3$  changes, both temperature and dynamics are affected, allowing for complex chemical-dynamical feedbacks beyond the cold season when the pathway is active. Hence, we also find a  $\text{NO}_x$  polar increase in spring-to-summer in the southern hemisphere, and in spring in the northern hemisphere. The springtime  $\text{NO}_x$  increase arises from anomalously strong poleward transport associated with a weaker polar vortex. We argue that the weakening of zonal-mean polar winds down to the lower stratosphere, which is statistically significant at the 0.90 level in spring months, is caused by strengthened planetary waves induced by the mid-latitude zonal asymmetries in  $\text{O}_3$  and short-wave heating.