



## Introducing ToE-MIP: Time-of-Emergence Model Intercomparison Project

S. Schlunegger (1), K. Rodgers (1), J. Sarmiento (1), T. Froelicher (2), J. Christian (3), J. Dunne (4), and M. Long (5)

(1) Princeton University, United States (ss23@princeton.edu), (2) University of Bern, Switzerland, (3) Canadian Centre for Climate Modelling and Analysis, Canada, (4) Geophysical Fluid Dynamics Lab, United States, (5) National Center for Atmospheric Research

Invasion of anthropogenic carbon and heat into the ocean results in a cascade of biogeochemical and physical changes. In this study, we use 3 initial condition large ensembles (ICLE) experimental design with an Earth System Model (ESM) to estimate the timing, sequence and model-dependence of emergence of anthropogenic signals above natural background variability for a suite of biogeochemical variables under 21st century climate change. We focus on emergence of the ocean carbon sink and its components: a calcium carbonate pump, a soft-tissue pump, and a solubility pump. We find that the chronology of emergence remains broadly consistent amongst the models. First, emergences the calcium carbonate pump, second, emergence of solubility pump (approximated by the air-sea carbon fluxes), and finally, emergence of the soft tissue pump. The three ICLE models are GFDL-ESM2M, CanESM2 and CESM1-BGC. Our hypothesis is that changes in the calcium carbonate pump emerge first, as these are the most strongly linked to the depletion of carbonate ion. Air-Sea carbon fluxes emerge at intermediate time scales, as there is a competition on solubility between rising atmospheric  $pCO_2$ , rising ocean temperatures which acts to reduce solubility, and the nonlinearity of  $pCO_2$  at high DIC concentrations (i.e. the Revel factor). Finally, the soft tissue pump emerges due changes in the physical state (e.g. heat, mixed-layer depth) of the ocean which take the majority of the 21st century to become emergent.