

The Seasonal Cycle of CO₂ in the Southern Ocean: Diagnosing Anomalies in CMIP5 Earth Systems Models

N.P. Mongwe (1,2), P.M.S. Monteiro (1), and M. Vichi (2)

(1) Council for Scientific and Industrial Research (CSIR), NRE, Cape Town, South Africa (npmongwe@gmail.com), (2) University of Cape Town, Department of Oceanography

The Southern Ocean forms a key component of global carbon budget: taking up about a third (1.0 ± 0.5 PgC yr⁻¹) of the total global oceanic annual uptake of anthropogenic CO₂ and accounting for most of the uncertainty in the global ocean CO₂ fluxes. A recent synthesis study (Lenton et al., 2013), showed that although ocean biogeochemical models agree on the mean annual flux of CO₂ in the Southern Ocean, they disagree on both amplitude and phasing of the seasonal cycle and compare poorly to observations. In this study, we used a diagnostic analysis based on the representation of the seasonal cycle of CO₂ air-sea fluxes (FCO₂), (Mongwe et al., 2016) on 10 CMIP5 earth system models. Our approach shows how an understanding of the seasonal variability of drivers of CO₂ at a seasonal scale helps explain the anomalies between observations and CMIP5 models. In this study, we show that the model –observations FCO₂ seasonal cycle anomalies are due to differences in the magnitude of the seasonal cycle of dominant drivers of pCO₂ i.e. thermal and physical-biogeochemical drivers. We found that 6 of the 10 CMIP5 models overestimate the role of solubility (temperature driven) during autumn, which delays the impact of winter sub-surface DIC entrainment to surface pCO₂ and thus causing a divergence from observations FCO₂. We found that 3 of the 10 overestimate the physical –biogeochemical driver on pCO₂ due to overestimation of the net CO₂ biological uptake. We found that convective CO₂ winter entrainment, as well as the impact of summer biological CO₂ uptake, have a compound effect on the amplitude of the seasonal cycle of DIC and hence FCO₂.