Machine learning parameterizations for ozone in climate sensitivity simulations

Peer Nowack (1,2,3), Qing Yee Ellie Ong (4), Peter Braesicke (5), Joanna Haigh (1,2), Nathan Luke Abraham (6,7), John Pyle (6,7), and Apostolos Voulgarakis (2)

(1) Imperial College London, Grantham Institute for Climate Change and the Environment, UK, (2) Imperial College London, Department of Physics - Blackett Laboratory, UK, (3) Imperial College London, Data Science Institute, UK, (4) University of Oxford, UK, (5) Karlsruhe Institute of Technology, IMK-ASF, Germany, (6) University of Cambridge, Department of Chemistry, UK, (7) National Centre for Atmospheric Science, UK

Ozone is an important feedback factor in climate simulations [1-5]. However, interactive atmospheric chemistry schemes needed for calculating changes in ozone are computationally expensive. Climate modelers therefore often use climatological ozone fields, which are neither consistent with the actual climate state simulated by each model nor with the specific climate change scenario. We suggest a novel method using a machine learning regression algorithm to model ozone in pre-industrial and abrupt 4xCO$_2$ climate sensitivity simulations [6]. Using the atmospheric temperature field as the only input, the regression reliably predicts three-dimensional ozone distributions. In particular, the representation of stratospheric ozone variability is much improved compared with a fixed climatology. Our method requires training data covering only a fraction of the usual length of simulations and, as we show here, is transferable between generations of the UK Met Office’s climate model. Our method thus promises to be an important stepping stone towards a range of new computationally efficient methods to consider ozone changes in long climate simulations.

References:


