## **SEEMET**

# South-Eastern Europe Meteorological Training

Nataša Strelec Mahović, Petra Mikuš Jurković, Marko Blašković, Tanja Renko

Meteorological and Hydrological service - DHMZ, Zagreb, Croatia





#### **Initiative**

- initiative of the Directors of the South-East European NMSs (ICSEED)
- series of courses planned in order to regularly train operational staff of the Eastern European Meteorological and Hydrological Services.
- 5-year training programme approved, sponsored by EUMETSAT and supported by EUMETCAL



## **Challenges**

- Lack of in-house training, lack of training in general
- LANGUAGE barrier
- Different levels of skills and expertize
- Training in many topics needed



## **SEEMET Training Courses**

courses addressed to weather forecasters and hydrological forecasters

#### 2 levels

Basic course ~ covering basics of satellite meteorology, satellite image interpretation and satellite data/products applications in operational weather forecasting Advanced course ~ dealing with certain meteorological /hydrological topic of interest.

 The courses alternate and are organized in different country every year in a form of 3-5 days clasroom training courses



## **Learning objectives**

- improvement of the skills of operational meteorologists in interpretation and application of satellite images and products
- improvement of the competencies in short-term weather forecasting
- improvement of the capabilities of the NHMSs of South Eastern Europe in providing weather and warning services to national stakeholders and public.



#### Lecturers

**Experts from participating NMSs** 

www.meteo.hr

Invited experts from EUMETSAT, EUMeTrain, ECMWF, ESSL, ....

## **Participants**

Forecasters from Slovenia, Croatia, Hungary, Bosnia and Herzegovina, Serbia, Montenegro, Kosovo, Macedonia, Bulgaria, Romania, Albania, Greece





#### **Previous Courses**

SEEMET initiative started in 2016, 4 courses organized until today:

- Ljubljana, Slovenia (2016) Advanced course on floods and flash flood forecasting (hydrological forecasts and warnings)
- Bar, Montenegro (2017) Basic satellite meteorology course - translated into Serbian/Croatian/Montenegrian language
- Primošten, Croatia (2018) Advanced course on convection forecasting and warnings

www.meteo.hr

 Sarajevo, Bosnia and Herzegovina (2019) — Basic satellite meteorology course in English







#### **Previous Courses**



Ljubljana, Slovenia (2016) – Advanced course on floods and flash flood forecasting (hydrological forecasts and warnings)





#### **Topics**

**NWP MODELS: PRECIPITATION UNCERTAINTIES, ALADIN** 

MOISTURE RIVERS BASED ON SATELLITE DATA

**EUROPEAN FLOOD AWARENESS SYSTEM (EFAS)** 

**EUMETSAT SATELLITE APPLICATION FACILITY ON SUPPORT TO OPERATIONAL HYDROLOGY AND WATER MANAGEMENT (H-SAF)** 

INGREDIENTS FOR EFFECTIVE SATELLITE SEVERE WEATHER TRAINING

**USE OF RADAR DATA FOR FLASH FLOODS** 

FORECASTING AND NOWCASTING PROCESS: A FLOOD CASE STUDY-GREECE

SEE FLASH FLOOD GUIDANCE

**EUMETRAIN TRAINING RESOURCES -FOCUS ON FLASH FLOODS AND FLOODS** 

METEOROLOGICAL AND HYDROLOGICAY WARNING SYSTEMS IN SE EUROPE -

**EXAMPLES: SLOVENIA, HUNGARY, SERBIA** 

INTERACTION WITH MEDIA - COMMUNICATING FORECASTS OF HIGH IMPACT **WEATHER** 









Bar, Montenegro (2017) Basic satellite meteorology course translated into Serbian/ **Croatian/Montenegrian language** 





| Time\Day    | Monday, 8 May         | Tuesday, 9 May      | Wednesday, 10 May       | Thursday, 11 May    | Friday, 12 May         |
|-------------|-----------------------|---------------------|-------------------------|---------------------|------------------------|
| 9.00-10.30  |                       |                     |                         | Introduction to     | Practical work:        |
|             |                       | IR channels +IR3.9  | Overview RGB            | satellite analysis  | archive, visualisation |
|             |                       |                     | products                | (SatRep) +          | tools, ePort, other    |
|             |                       |                     |                         | thunderstorm        | web pages /            |
|             |                       |                     |                         | forecast process    | resources              |
| 11.00-12.30 |                       |                     | Satellite products      | Introduction to     | Final quiz /           |
|             |                       | Solar channels +    | overview (no            | synoptic frontal    | Discussion /           |
|             |                       | IR3.9               | algorithms), , RGBs     | analysis, including | Closing                |
|             |                       |                     | combined with           | sub structures and  |                        |
|             |                       |                     | derived products        | (pre) frontal       |                        |
|             |                       |                     |                         | convection (AW)     |                        |
| 14.00-15.30 | Basics of remote      |                     | Practical work: RGB     | Practical work:     |                        |
|             | sensing, EM           | Practical work:     | interpretation,         | Frontal analysis,   |                        |
|             | spectrum, channels,   | single channels     | feature identification  | including sub       |                        |
|             | orbits and            | (conceptual models) | (fog, fire, convection, | structures, cross   |                        |
|             | instruments, image    |                     | pollution, dust, cloud  | sections and        |                        |
|             | enhancements          |                     | properties)             | soundings           |                        |
| 16:00-17.30 | WV Channels:          |                     |                         |                     |                        |
|             | Analysis of WV        |                     |                         |                     |                        |
|             | images: Jets,         | Practical work:     | Practical work:         | Practical work:     |                        |
|             | Deformation Zones,    | continued           | continued               | continued           |                        |
|             | Vorticity             |                     |                         |                     |                        |
|             | Centres, Cyclogenesis |                     |                         |                     |                        |













Primošten, Croatia (2018) – Advanced course on convection forecasting and warnings







### **Topics**

Ingredients-based storm forecasting

Sounding-derived parameters and their application in convection forecast

NWP in convection forecast

Low level moisture seen in VIS and IR channels and related RGB products

Use of WV imagery in forecasting severe convection over South-Eastern Europe.

Convergence lines in satellite images

Cloud microphysical properties seen in satellite images (NIR channels and RGBs)

NWCSAF products – important for convection

Stability information from satellite data

ECMWF Extreme Forecast Index (EFI) for forecasting outbreaks of severe convection

Radar analysis of convective storms - tracking, precipitation type, wind signatures Satellite characteristics of mature storms

Lightning - theory and benefits in nowcasting

Case studies of various types of storms using remote sensing (satellite, radar, lightning) data

e-port introduction, Practical work

Communications and warnings

Quiz, feedback, validation







SARAJEVO, Bosnia and Herzegovina, 2019 – Basic Satellite Meteorology Course In English

www.meteo.hr





|                                    | Tuesday                                                                                                                                  | Wednesday                                                                                        | Thursday                                                                 | Friday                                                     |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------|
| 9:00-<br>10:30                     | Basics – cloud<br>identification, basic<br>analysis of satellite<br>data                                                                 | Severe weather, severe precipitation, orographic convection, thunderstorms, hail Hail supression | Large scale analysis:<br>Fronts and frontal<br>systems                   | New channels on MTG  New channels and RGBs from MTG        |
| 11:00-<br>11:45<br>11:45-<br>12:30 | Fog /low cloud identification - RGBs, NWC SAF  Detection and forecast of fog: Model analysis, soundings - profiles, cross-sections       | SIMULATOR Exercise on convection                                                                 | Inside Rapid Cyclogensis  Exercise - Frontal analysis, conceptual models | Excercise, Quiz, Final assesment, evaluation of the course |
| 13:30-<br>14:15<br>14:15-<br>15:00 | Excercise – satellite<br>image analysis, RGB<br>analysis (in groups,<br>different areas)–<br>which RGB is best for<br>different features | Surface features from<br>RGBs – snow, fires<br>Land SAF + Hydro SAF<br>drought monitoring        | Presentation of participants work                                        |                                                            |
| 15:30-<br>17:00                    | Presentations of participants work                                                                                                       | Socrative Exercise on<br>Surface features                                                        |                                                                          |                                                            |



www.meteo.hr





#### **Evaluation**

 On the final day the Course Evaluation is submitted by participants to provide organizers with a systematic understanding of the participants' satisfaction about the course content, organization, effectiveness in achieving the learning objectives and overall value for their professional development



#### **Future of SEEMET**

• 2020 Advanced course – in Romania

- New 5-years cycle expected to be approved by ICSEED and supported by EUMETSAT
- Focus on applications of MTG and EPS-SG data and products in operational forecast



## Questions, comments, suggestions??

strelec@cirus.dhz.hr



