

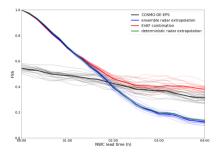
Combining Ensembles of NWP and Observation-based Nowcasting at DWD to Improve Convective Precipitation Forecasts

Martin Rempel (martin.rempel@dwd.de) Deutscher Wetterdienst

10th European Conference on Severe Storms, Kraków, Poland 6 November 2019

Deutscher Wetterdienst

Radar-based Nowcasting


Shortest-range NWP

Motivation

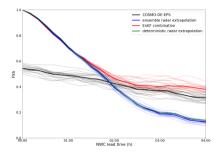
FSS for NWP, NWC and combined ensemble - period May/June 2016 (threshold: 25 dBZ; boxsize = 22 km)

Radar-based Nowcasting

- \rightarrow initialization every 5 min; quickly available
- \rightarrow predictability depends on spatial scale (Venugopal et al., 1999)

Shortest-range NWP

- → initialization every 3 h; available approx. 1:40h afterwards
- \rightarrow forecast quality is affected by initial conditions, parametrizations, model resolution



Motivation

FSS for NWP, NWC and combined ensemble - period May/June 2016 (threshold: 25 dBZ; boxsize = 22 km)

Radar-based Nowcasting

- \rightarrow initialization every 5 min; quickly available
- → predictability depends on spatial scale (Venugopal et al., 1999)

Shortest-range NWP

- → initialization every 3 h; available approx. 1:40h afterwards
- \rightarrow forecast quality is affected by initial conditions, parametrizations, model resolution

Aim

Combining Nowcasting and NWP to preserve the best quality of both forecasts.

How to forecast precipitation seamlessly?

Objectives

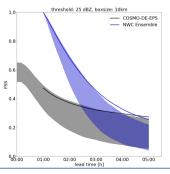
How to forecast precipitation seamlessly? How do different methods perform?

What do we need for this?

- \rightarrow A characteristic for forecast evaluation
- \rightarrow Nowcasting and NWP forecasts realized as ensembles
- \rightarrow Evaluation can be based on spread or skill

What do we need for this?

- \rightarrow A characteristic for forecast evaluation
- $\rightarrow\,$ Nowcasting and NWP forecasts realized as ensembles
- \rightarrow Evaluation can be based on spread or skill
- \rightarrow Further information on the Nowcasting ensemble tomorrow on poster P17



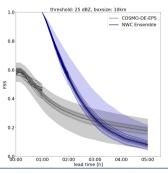
What do we need for this?

- \rightarrow A characteristic for forecast evaluation
- \rightarrow Nowcasting and NWP forecasts realized as ensembles
- \rightarrow Evaluation can be based on spread or skill
- \rightarrow Further information on the Nowcasting ensemble tomorrow on poster P17

IQR and mean FSS for May/June 2016

Forecast skill as basis for combination

- \rightarrow climatological weighting
- \rightarrow Method adapted from Kober et al. (2012)
- \rightarrow Evaluation of forecasts for a training period
- \rightarrow Construct weighting functions for each threshold
- → Combining pre-computed exceedance probabilities by the appropriate weighting function
- \rightarrow Combination in probability space


Martin Rempel

What do we need for this?

- \rightarrow A characteristic for forecast evaluation
- $\rightarrow~$ Nowcasting and NWP forecasts realized as ensembles
- \rightarrow Evaluation can be based on spread or skill
- \rightarrow Further information on the Nowcasting ensemble tomorrow on poster P17

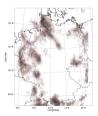
IQR and mean FSS for May/June 2016 + short term verification

Forecast skill as basis for combination

- \rightarrow dynamical weighting
- \rightarrow Adjustments on the method described before
- → Additional short-term evaluation of recent forecasts
- → Current NWP quality is extrapolated
- \rightarrow Quality as weighting of the ensemble members
- \rightarrow Combination in probability space

Spread-based Combination by Utilization of an EnKF

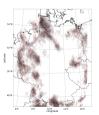
- \rightarrow Ensemble Kalman Filter for combining Nowcasting and NWP ensemble iteratively
- \rightarrow Method according to Nerini et al., 2019
- \rightarrow Combination in the ensemble space

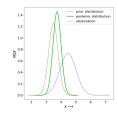


Spread-based Combination by Utilization of an EnKF

- \rightarrow Ensemble Kalman Filter for combining Nowcasting and NWP ensemble iteratively
- \rightarrow Method according to Nerini et al., 2019
- \rightarrow Combination in the ensemble space

Forecast model: ensemble-based radar extrapolation

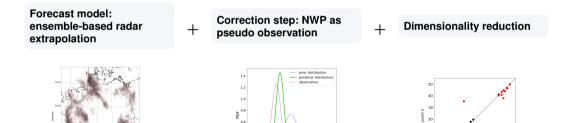

Spread-based Combination by Utilization of an EnKF


+

- \rightarrow Ensemble Kalman Filter for combining Nowcasting and NWP ensemble iteratively
- \rightarrow Method according to Nerini et al., 2019
- \rightarrow Combination in the ensemble space

Forecast model: ensemble-based radar extrapolation

Correction step: NWP as pseudo observation

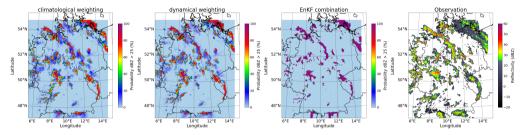


Spread-based Combination by Utilization of an EnKF

- \rightarrow Ensemble Kalman Filter for combining Nowcasting and NWP ensemble iteratively
- Method according to Nerini et al., 2019 \rightarrow
- \rightarrow Combination in the ensemble space

×_____ 5

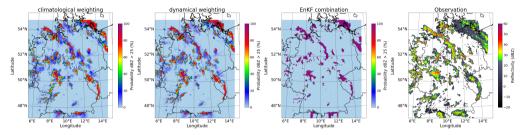
20 30 arid point 1


7

0.4 0.2

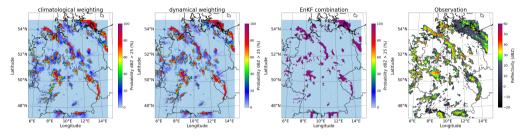
Exceedance probabilities of the different combination methods 2016/06/25 12 UTC + 60 min

 \rightarrow 60 min lead time



Exceedance probabilities of the different combination methods 2016/06/25 12 UTC + 60 min

- \rightarrow 60 min lead time
- $\rightarrow~{\rm EnKF}$ combination barely shows spread

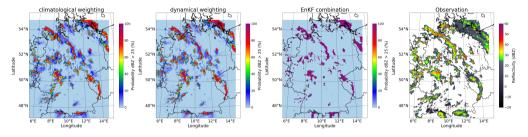


Exceedance probabilities of the different combination methods 2016/06/25 12 UTC + 60 min

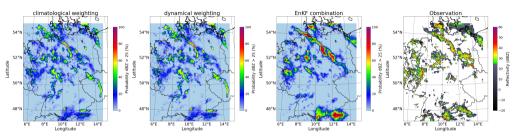
Martin Rempel

- \rightarrow 60 min lead time
- $\rightarrow~{\rm EnKF}$ combination barely shows spread

 $\rightarrow\,$ high probabilities from Nowcasting/low probabilities from NWP

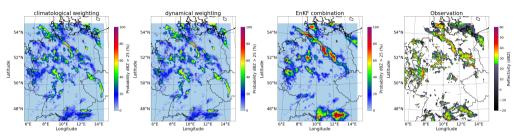


Exceedance probabilities of the different combination methods 2016/06/25 12 UTC + 60 min



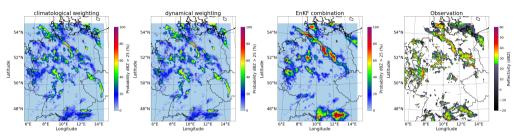
- \rightarrow 60 min lead time
- $\rightarrow~{\rm EnKF}$ combination barely shows spread

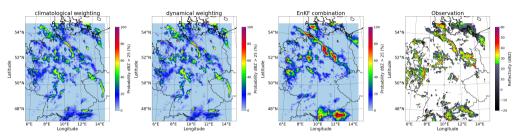
- → high probabilities from Nowcasting/low probabilities from NWP
- \rightarrow Mismatches in localization visible \rightarrow fading-in/fading-out with increasing lead time


Exceedance probabilities of the different combination methods 2016/06/25 12 UTC + 180 min

 \rightarrow 180 min lead time

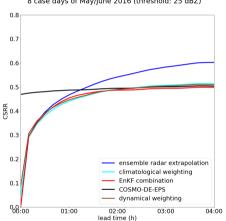
Exceedance probabilities of the different combination methods 2016/06/25 12 UTC + 180 min


- \rightarrow 180 min lead time
- → EnKF combination reveals a steady field of probabilities



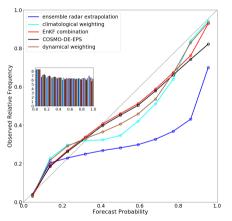
Exceedance probabilities of the different combination methods 2016/06/25 12 UTC + 180 min

- \rightarrow 180 min lead time
- $\rightarrow\,$ EnKF combination reveals a steady field of probabilities
- $\rightarrow\,$ Less spread in Nowcasting + weighting $\rightarrow\,$ higher probabilities



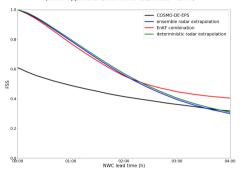
Exceedance probabilities of the different combination methods 2016/06/25 12 UTC + 180 min

- \rightarrow 180 min lead time
- $\rightarrow\,$ EnKF combination reveals a steady field of probabilities
- $\rightarrow\,$ Less spread in Nowcasting + weighting $\rightarrow\,$ higher probabilities
- $\rightarrow\,$ Larger spread in NWP + weighting $\rightarrow\,$ lower probabilities

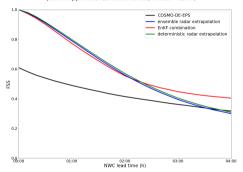

CSRR for NWP, NWC and combined forecasts 8 case days of May/June 2016 (threshold: 25 dBZ)

- \rightarrow Evaluation for 8 case days in May/June 2016
- \rightarrow Hourly initializations between 11 and 23 UTC

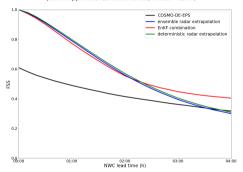
Reliability diagram for NWP, NWC and combined forecasts 8 case days of May/June 2016 (threshold: 25 dBZ)



- $\rightarrow\,$ Climatological and dynamical weighting exhibit a deficiency for probabilities around 50 %
- → Possibly caused by the shown fading-in/fading-out problem
- $\rightarrow\,$ EnKF combination agrees with NWP depending on the transition towards the NWP
- → Increase at high forecasted probabilities induced by the small spread at short lead times

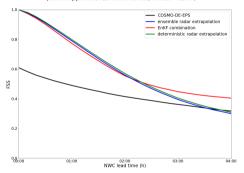

FSS for NWP, NWC and combined ensemble period May/lune 2016 (threshold: 25 dBZ: boxsize = 22 km)

- \rightarrow 31 days of May/June 2016
- \rightarrow Hourly initializations between 11 and 23 UTC



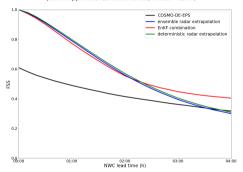
FSS for NWP, NWC and combined ensemble period May/June 2016 (threshold: 25 dBZ; boxsize = 22 km)

- \rightarrow 31 days of May/June 2016
- \rightarrow Hourly initializations between 11 and 23 UTC
- \rightarrow Results divided in four categories:

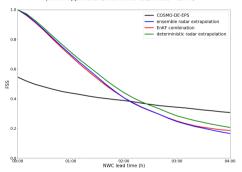


FSS for NWP, NWC and combined ensemble period May/lune 2016 (threshold: 25 dBZ; boxsize = 22 km)

- \rightarrow 31 days of May/June 2016
- \rightarrow Hourly initializations between 11 and 23 UTC
- \rightarrow Results divided in four categories:
 - High/low reflectivity coverage
 - Decrease/increase of coverage with lead time


FSS for NWP, NWC and combined ensemble period May/lune 2016 (threshold: 25 dBZ; boxsize = 22 km)

- \rightarrow 31 days of May/June 2016
- \rightarrow Hourly initializations between 11 and 23 UTC
- \rightarrow Results divided in four categories:
 - High/low reflectivity coverage
 - Decrease/increase of coverage with lead time
- $\rightarrow \mbox{ Lower FSS till +2 } h \rightarrow \mbox{ induced by the small spread or interpolation issues}$



FSS for NWP, NWC and combined ensemble period May/lune 2016 (threshold: 25 dBZ; boxsize = 22 km)

- \rightarrow 31 days of May/June 2016
- \rightarrow Hourly initializations between 11 and 23 UTC
- \rightarrow Results divided in four categories:
 - High/low reflectivity coverage
 - Decrease/increase of coverage with lead time
- $\rightarrow \mbox{ Lower FSS till +2 } h \rightarrow \mbox{ induced by the small spread or interpolation issues}$
- → Higher resolution than the effective model resolution may cause higher FSS at the end

FSS for NWP, NWC and combined ensemble period May/June 2016 (threshold: 25 dBZ; boxsize = 22 km)

- $\rightarrow\,$ Low reflectivity coverage with an increase with time
- → Small spread in Nowcasting ensemble leads to following Nowcasting too long

\rightarrow How to forecast precipitation seamlessly?

- Ensemble forecasts allow to use spread as an additional possible characteristic to base a combination on
- Two skill-based and one spread-based methods are investigated

\rightarrow How to forecast precipitation seamlessly?

- Ensemble forecasts allow to use spread as an additional possible characteristic to base a combination on
- Two skill-based and one spread-based methods are investigated
- Spread-based EnKF combination:
 - needs no training period

\rightarrow How to forecast precipitation seamlessly?

- Ensemble forecasts allow to use spread as an additional possible characteristic to base a combination on
- ► Two skill-based and one spread-based methods are investigated
- Spread-based EnKF combination:
 - needs no training period
 - provides a complete ensemble of coherent reflectivity fields

Summary

\rightarrow How to forecast precipitation seamlessly?

- Ensemble forecasts allow to use spread as an additional possible characteristic to base a combination on
- Two skill-based and one spread-based methods are investigated

Spread-based EnKF combination:

- needs no training period
- provides a complete ensemble of coherent reflectivity fields
- has lots of potential

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Summary

$\rightarrow~$ How to forecast precipitation seamlessly?

- Ensemble forecasts allow to use spread as an additional possible characteristic to base a combination on
- Two skill-based and one spread-based methods are investigated

Spread-based EnKF combination:

- needs no training period
- provides a complete ensemble of coherent reflectivity fields
- has lots of potential

\rightarrow How do different methods perform?

- In CSRR all methods show a well transition between Nowcasting and NWP
- Weighting function methods exhibit a fading-in/fading-out of probabilities when mismatches between Nowcasting and NWP occur
- EnKF combination reveals insufficient spread at short lead times
- Best forecast skill is reached when there's a large reflectivity coverage of the domain decreasing with time

