

High Diversity of Fungi in Air Particulate Matter

J. Fröhlich-Nowoisky (1), V. R. Despres (1), and U. Pöschl (1)

(1) Max Planck Institute for Chemistry, Biogeochemistry Department, Mainz, Germany (poeschl@mpch-mainz.mpg.de, +49-(0)6131-305487), (2) Johannes Gutenberg University, Institute of Geosciences, Mainz, Germany, (3) Johannes Gutenberg University, Institute of General Botany, Mainz, Germany

Fungal spores account for large proportions of air particulate matter, and they influence the hydrological cycle and climate as nuclei for water droplets and ice crystals in clouds, fog and precipitation. Moreover, some fungi are major pathogens and allergens. The diversity of airborne fungi is, however, hardly known.

By DNA analysis we found pronounced differences in the relative abundance and seasonal cycles of various groups of fungi in coarse and fine particulate matter, with more plant pathogens in the coarse and more human pathogens and allergens in the respirable fine particle fraction ($< 3 \mu\text{m}$). Moreover, the ratio of Basidiomycota to Ascomycota was found to be much higher than previously assumed, which might also apply to the biosphere.

References:

Després, V.R., J.F. Nowoisky, M. Klose, R. Conrad, M.O. Andreae, U. Pöschl, Characterization of primary biogenic aerosol particles in urban, rural, and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes, *Biogeosciences*, 4, 1127–1141, 2007.

Elbert, W., P. E. Taylor, M. O. Andreae, U. Pöschl, Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions, *Atmospheric Chemistry and Physics*, 7, 4569–4588, 2007.

Fröhlich-Nowoisky, J. Despres, V.R., Pöschl, U.: High diversity of fungi in air particulate matter, *Proceedings of the National Academy of Sciences*, submitted, 2008.