Geophysical Research Abstracts, ﬂ
Vol. 11, EGU2009-10298-2, 2009
EGU General Assembly 2009 ! '

© Author(s) 2009

Enabling the development of Community Extensions to GI-cat - the
SIB-ESS-C case study

L. Bigagli (1,2), N. Meier (3), E. Boldrini (1), and R. Gerlach (3)

(1) Institute of Methodologies for Environmental Analysis of the Italian National Research Council (IMAA-CNR), Contrada
Santa Loja - Zona Industriale, 85050, Tito Scalo (PZ), Italy ({bigagli, boldrini } @imaa.cnr.it), (2) University of Florence,
Piazza Ciardi 25, 59100, Prato, Italy (lorenzo.bigagli @pin.unifi.it), (3) Friedrich-Schiller-University, Institute for Geography,
Earth Observation, Grietgasse 6, 07743 Jena, Germany ({n.meier, roman.gerlach} @uni-jena.de)

Gl-cat is a Java software package that implements discovery and access services for disparate geospatial resources.
An instance of Gl-cat provides a single point of service for querying and accessing remote, as well as local,
heterogeneous sources of geospatial information, either through standard interfaces, or taking advantage of GI-cat
advanced features, such as incremental responses, query feedback, etc.

Gl-cat supports a number of de-iure and de-facto standards, but can also be extended to additional community
catalog/inventory services, by defining appropriate mediation components.

The GlI-cat and the SIB-ESS-C development teams collaborated in the development of a mediator to the Siberian
Earth Science System Cluster (SIB-ESS-C), a web-based infrastructure to support the communities of environ-
mental and Earth System research in Siberia.

This activity resulted in the identification of appropriate technologies and internal mechanisms supporting the
development of GI-cat extensions, that are the object of this work.

Gl-cat is actually built up of a modular framework of SOA components, that can be variously arranged to fit the
needs of a community of users. For example, a particular GI-cat instance may be configured to provide discovery
functionalities onto an OGC WMS; or to adapt a THREDDS catalog to the standard OGC CSW interface; or to
merge a number of CDI repositories into a single, more efficient catalog.

The flexibility of GI-cat framework is achieved thanks to its design, that follows the Tree of Responsibility (ToR)
pattern and the Uniform Pipe and Filter architectural style.

This approach allows the building of software blocks that can be [U+FB02]exibly reused and composed in
multiple ways. In fact, the components that make up any Gl-cat configuration all implement two common
interfaces (i.e. IChainNode and ICatalogService), that support chaining one component to another . Hence, it
would suffice to implement those interfaces (plus an appropriate factory class: the mechanism used to create
Gl-cat components) to support a custom community catalog/inventory service in GI-cat.

In general, all the terminal nodes of a GI-cat configuration chain are in charge of mediating between the GI-cat
common interfaces and a backend, so we implemented a default behavior in an abstract class, termed Accessor, to
be more easily subclassed.

Moreover, we identified several typical backend scenarios and provided specialized Accessor subclasses, even
simpler to implement. For example, in case of a coarse-grained backend service, that responds its data all at once,
a specialized Accessor can retrieve the whole content the first time, and subsequently browse/query the local copy
of the data.

This was the approach followed for the development of SibesscAccessor.

The SIB-ESS-C case study is also noticeable because it requires mediating between the relational and the
semi-structured data models. In fact, SIB-ESS-C data are stored in a relational database, to provide performant
access even to huge amounts of data. The SibesscAccessor is in charge of establishing a JDBC connection to the
database, reading the data by means of SQL statements, creating Java objects according to the ISO 19115 data
model, and marshalling the resulting information to an XML document.

During the implementation of the SibesscAccessor, the mix of technologies and deployment environments and the
geographical distribution of the development teams turned out to be important issues. To solve them, we relied on
technologies and tools for collaborative software development: the Maven build system, the SVN version control



system, the XPlanner project planning and tracking tool, and of course VOIP tools.

Moreover, we shipped the Accessor Development Kit (ADK) Java library, containing the classes needed for
extending Gl-cat to custom community catalog/inventory services and other supporting material (documentation,
best-practices, examples).

The ADK is distributed as a Maven artifact, to simplify dependency management and ease the common tasks of
testing, packaging, etc.

The SibesscAccessor was the first custom addition to the set of GI-cat accessors. Later, also the so-called Standard
Accessors library has been refactored onto the ADK.

The SIB-ESS-C case study also gave us the opportunity to refine our policies for collaborative software develop-
ment. Besides, several improvements were made to the overall GI-cat data model and framework.

Finally, the SIB-ESS-C development team developed a GI-cat web client by means of Web 2.0 technologies
(JavaScript, XML, HTML, CSS, etc.)

The client can easily be integrated in any HTML context on any web page.

The web GUI allows the user to define requests to Gl-cat by entering parameter strings and/or selecting an area
of interest on a map. The client sends its request to GI-cat via SOAP through HTTP-POST, parses GI-cat SOAP
responses and presents user-friendly information on a web page.



