



## **Concentration Gradients of Excess N<sub>2</sub> and N<sub>2</sub>O in the vadose zone and groundwater of the Mid-Atlantic coastal plain, U.S.A.**

R. Fox, T. Fisher, T. Kana, and A. Gustafson

Horn Point Laboratory, University of Maryland Center for Environmental Science, (rfox@hpl.umces.edu)

We have developed a method to measure excess N<sub>2</sub> and N<sub>2</sub>O vertical gradients in the vadose zone of an agricultural riparian buffer strip. Soil gas samples were taken from either buried equilibration chambers (inverted 50 mL open tubes usable only in unsaturated conditions) or silicone membrane diffusion samplers (closed 10 cm silicone tubes that allow sampling in unsaturated and flooded conditions). Excess N<sub>2</sub> concentrations were determined by measuring the N<sub>2</sub>/Ar ratios by mass spectrometry, whereas N<sub>2</sub>O was measured by gas chromatography. The precision of N<sub>2</sub>/Ar ratios was typically < 0.05% (CV) from triplicate injections. N<sub>2</sub>/Ar in the vadose zone of one sample set in late fall 2008 ranged from 83.87 in air and increased linearly to 84.31 at 1.5 m; another gradient showed a mid-depth maximum of 84.29. In groundwater at the same site, the equivalent N<sub>2</sub>/Ar at the gas/water interface was elevated (91.97-95.24). N<sub>2</sub>O concentrations in the vadose zone ranged from 0.1  $\mu$ M at 0.25 m to 0.39  $\mu$ M at 1.5 m, and N<sub>2</sub>O was again considerably higher in groundwater ranging over 8.20 - 8.63  $\mu$ M. These preliminary data indicate that the gas gradients in the vadose zone are due to both diffusive losses from the higher concentrations in groundwater as well as originating from internal sources within the vadose zone.