

Natural Analogue of Long-term CO₂ Storage in Western Taiwan

T. F. Yang

Department of Geosciences, National Taiwan University, Taipei, Taiwan (tyyang@ntu.edu.tw / +886-2-2363-6095)

CO₂ geo-sequestration is considered as the feasible method for the mitigation of CO₂ emission. It is usually very huge amount of natural carbon dioxide being stored in the substrata. There are many sources for natural carbon dioxide, including: magma related source, decomposition of carbonates in metamorphosed rocks, releasing of CO₂ dissolved fluids, and oxidation of organic matters, etc. Recent studies revealed that the storage time of natural carbon dioxides in the strata can be a wide range from very short time to up to several million years. It will be helpful to better understand the safety parameters of CO₂ injecting into the strata for storage, if we can study more natural analogue cases and know better about the residence time and the condition of CO₂ storage in natural cases.

Many CO₂ natural gases occur along active faults and/or drilling wells in western Taiwan, where does not have any signature of recent magma activity. However, elevated helium isotopic ratios (up to 6 Ra), carbon isotopes ($\delta^{13}\text{C} = -7 \sim -4 \text{ ‰}$) and high CO₂/³He ratios ($2 \times 10^{-9} \sim 10^{-10}$) of the natural gases strongly indicate that they were magmatic source in origin. Considering that the latest magmatic event occurred in Miocene (ca. 8 Ma), I propose that the CO₂ gases were degassing with the Miocene magmatism and consequently, they have been trapped in the strata until recent. We can reasonably assume that the original Miocene magmatic gas with helium isotopic composition of 6.5 Ra did not experience any loss of ³He and ⁴He, and was increasing the amount of ⁴He from the radiogenic nuclei of host rocks through time. Then, the mass balance calculation of helium isotopic composition support that the gases could be stored in the strata up to 5 million years. Those "old" magmatic CO₂ gases were able to migrate to surface through the fault zones due to recent crust activity. It demonstrates that the CO₂ gas could be long-term stored in the strata safely under certain conditions.