Sr Incorporation and Calcium Isotopic Fractionation during Calcium Carbonate Precipitation

A. Niedermayr (1), M. Dietzel (1), S.J. Köhler (1), F. Böhm (2), B. Kisakurek (2), and A. Eisenhauer (2)
(1) Institute of Applied Geosciences, Graz University of Technology, Graz, Austria, (2) Leibniz Institute of Marine Sciences, IFM-GEOMAR, Kiel, Germany (a.niedermayr@tugraz.at)

Element substitution and calcium isotopic fractionation can provide information about the mechanisms of CaCO$_3$ precipitation, precipitation rates, temperatures and solution chemistry. In the present study precipitation experiments for the formation of the CaCO$_3$ polymorphs: calcite, aragonite and vaterite were carried out. Calcium carbonates are formed at various Mg/Ca ratios or in presence of polyaspartic acid at temperatures between 5 and 40°C at pH 8.3 by using an advanced CO$_2$-diffusion technique (Tang et al., 2008).

The results indicate elevated Sr distribution coefficients (D_{Sr}) during calcite and vaterite formation at increasing precipitation rates, whereas D_{Sr}-values decrease only slightly with increasing rate during the formation of aragonite. $^{44}\text{Ca}/^{40}\text{Ca}$ fractionation increases for aragonite and calcite formation as precipitation rates increase. Preliminary results show less calcium isotopic fractionation for vaterite compared to calcite and aragonite. However, $\Delta^{44/40}\text{Ca}_{\text{CaCO}_3(s)}-\text{Ca}_{(aq)}$ -values for the three modifications indicate an inverse correlation with D_{Sr}. Respective mechanisms and proposed models are discussed.

Reference