

Surface erosion at disturbed alpine sites: effects of vegetation cover and plant diversity

C. Martin (1,2), M. Pohl (1,5), C. Alewell (2), C. Körner (3), A. Buttler (4,5), and C. Rixen (1)

(1) WSL Institute for Snow and Avalanche Research SLF, Unit Ecosystem Boundaries, Alpine Ecosystems, Flüelastrasse 11, 7260 Davos Dorf, Switzerland (pohl@slf.ch), (2) University of Basel, Institute of Environmental Geoscience, 4056 Basel, Switzerland, (3) University of Basel, Institute of Botany, Schönbeinstrasse 6, 4056 Basel, Switzerland, (4) Swiss Federal Research Institute WSL, Unit Restoration Ecology, Station 2, 1015 Lausanne, Switzerland, (5) Laboratory of Ecological Systems ECOS, Swiss Federal Institute of Technology Lausanne EPFL, Station 2, 1015 Lausanne, Switzerland

The relationship between plant diversity and soil stability in disturbed alpine terrain is poorly studied. In this paper, we investigated the influence of plant cover and diversity on water run-off and sediment yield on ski slopes. Rainfall simulations were conducted on a micro-scale (25 x 25 cm) to be able to replicate plots with different degrees of vegetation cover. We selected plots with 10%, 30% and 60% of vegetation cover containing different combinations of plant diversities: (i) grass, (ii) herb, (iii) moss/ lichen, and all combinations of these plant groups. Each combination was replicated five times with an applied rain intensity of 375 ml min^{-1} for about 5 minutes.

As could be expected, percent vegetation cover had a large effect on surface erosion: sediment yield decreased with increasing vegetation cover. However, within the plots with 60% cover, sediment yield was lower at higher plant diversity and functional group diversity.

The findings of this study support the view that beside the re-establishment of a closed vegetation cover, plant diversity is a relevant factor to reduce surface erosion at disturbed sites in alpine ecosystems.