

SIGNATURES OF TWO DISTINCT INITIATION MECHANISMS WHILE CMEs EVOLVE IN THE LOWER CORONA

M. V. Alves (1), C. L. de Souza Costa (1), M. Opher (2), Y. C. Liu (3), W. B. Manchester (4), and T. I. Gombosi (5)

(1) Instituto Nacional de Pesquisas Espaciais - INPE, LAP, Sao Jose dos Campos, Brazil (virginia@plasma.inpe.br), (2) George Mason University, Department of Physics and Astronomy, Sci & Tech I MSN 3F3, 4400 University Drive, Fairfax, VA 22030, United States, (3) University of New Hampshire, Space Science Center, Morse Hall 8 College Road, Durham, NH 03824, United States, (4) University of Michigan, Center for Space Environment Modeling, 2455 Hayward Street, Ann Arbor, MI 48108, United States, (5) University of Michigan, Department of Atmospheric, Oceanic, and Space Sciences, 2455 Hayward Street, Ann Arbor, MI 48109, United States

We present a comparison of a three-dimensional (3D) simulation of coronal mass ejections (CMEs) formed with two different initiation mechanisms: Gibson & Low (1998) (as GL98 from now on) and Titov & Démoulin (1999) (as TD99 from now on). Mainly we aim to compare how the CME magnetic configuration changes during their propagation in the lower corona, until $6R_S$. The simulations are performed using the Space Weather Modeling Framework (SWMF) during the solar minimum (CR1922). We found that both CME-driven shocks are quasi-parallel at the nose and that GL98 presents a higher shock acceleration ($\sim 150 \text{ m/s}^2$ versus $\sim 100 \text{ m/s}^2$) and a higher Mach number, suggesting it would accelerate particles more efficiently. Both initiation mechanisms also presented a post-shock compression for $R > 3R_S$, being slightly larger in TD99. They presented also a similar sheath width that increases while propagating away from the Sun (larger in GL98 case). We also found that in GL98 case the CME is driven by a combination of magnetic and thermal pressure, while in TD99 case the thermal pressure dominates its evolution. GL98 presents a sheath mass 20% larger than TD99, a possible explanation for the presence of higher force values for GL98. This paper intends to serve as a prototype for future comparisons of CME evolution, in the lower corona.