

Visualizing the impact of living roots on rhizosphere soil structure using X-ray microtomography

M. MENON (1), M. Berli (2), T.A. Ghezzehei (3), P. Nico (4), M.H. Young (2), and S.W. Tyler (5)

(1) School of Earth and Environment, University of Leeds, U.K. , (2) Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, U.S.A., (3) School of Natural Sciences, University of California, Merced, U.S.A., (4) Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, U.S.A., (5) Department of Geological Science and Engineering, University of Nevada, Reno, U.S.A.

The rhizosphere is an interface between bulk soil and plant root and plays a critical role in root water and nutrient uptake. In this study, we used X-ray Computerized Microtomography (microCT) to visualize soil structure around living roots non-destructively and with high spatial resolution. Four different plant species (*Helianthus annuus*, *Lupinus hartwegii*, *Vigna radiata* and *Phaseolus lunatus*), grown in four different porous materials (glass beads, medium and coarse sand, loam aggregates), were scanned with 10 μm spatial resolution, using the microtomography beamline 8.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA. Sample cross section images clearly show contacts between roots and soil particles, connecting water films, air-water interfaces as well as some cellular features of the plants taproots. We found with a simulation experiment, inflating a cylindrical micro-balloon in a pack of air-dry loam aggregates, that soil fracturing rather than compaction might occur around a taproot growing in dry soil. From these preliminary experiments, we concluded that microCT has potential as a tool for a more process-based understanding of the role of rhizosphere soil structure on soil fertility, plant growth and the water balance at the earth-atmosphere interface.