

A modelling study of the present day budget of atmospheric H₂ and HD and the environmental controls on its soil sink.

N. Warwick and J. Pyle

NCAS-Climate, University of Cambridge, Chemistry, Cambridge, United Kingdom

A future global hydrogen-based economy is a possibility as oil reserves run out. However, the present day hydrogen budget is not well understood. We need to understand H₂ in the air today before the impact of future H₂ emissions can be accurately estimated in a hydrogen-based energy industry. In this study, detailed model studies are performed to better understand the present day H₂ budget. Emission datasets are compiled for both anthropogenic and natural sources of atmospheric H₂. These are included in 3D global model simulations of both H₂ and HD. Model simulations compare well to atmospheric observations, accurately reproducing both the latitudinal gradient and seasonal cycles. They demonstrate the importance of soil uptake in controlling H₂ levels and distribution, and further indicate how changes in temperature, soil moisture and snow cover influence soil uptake on a global scale.