

The first high resolution continental $\delta^{18}\text{O}$ isotopic record demonstrating a ‘stepwise’ transition into Oligocene icehouse conditions

M. Bugler (1), S.T Grimes (1), J.J Hooker (2), M.E Collinson (3), G.D Price (1), and C.W Smart (1)

(1) University of Plymouth, School of Earth, Ocean and Environmental Sciences, Plymouth, United Kingdom

(melanie.bugler@plymouth.ac.uk), (2) Department of Palaeontology, Natural History Museum, Cromwell Road, London, SW7 5BD, UK, (3) Department of Geology, Royal Holloway University of London, Egham, Surrey TW20 0EX, U.K

Isotopic analysis of shell fragments of the freshwater gastropod species *Viviparus lenthus* from the fluvio-lacustrine Solent Group deposits of the Isle of Wight, Hampshire Basin, U.K, has produced a high resolution terrestrial $\delta^{18}\text{O}$ record. This record shows a stepwise shift into the Eocene/ Oligocene (E/O) transition, which is of a comparable resolution to marine records of this time period. Even though the earliest Oligocene glacial maximum (EOGM) itself appears to be missing due to a hiatus, our results suggest that there are a number of preceding isotopic shifts leading up to it, including continental representation of the ‘Late Eocene Event’ and also step 1 of the Eocene / Oligocene transition (Step 1 of Coxall *et al.*, 2005: *Nature* 433, 53-57); EOT-1 of Katz *et al.* (2008: *Nature Geoscience* 1, 329-334). There is also a second isotopic step that immediately precedes the sedimentary hiatus which could, depending upon the duration of the brake in deposition, represent either the Eocene / Oligocene transition 2 (EOT-2) of Katz *et al.* (2008: *Nature Geoscience* 1, 329-334), or step 2 of Coxall *et al.* (2005: *Nature* 433, 53-57). This is the first time these events have been documented within the continental record.

Combining the bulk $\delta^{18}\text{O}$ isotope record with a new *Viviparus contectus* species specific thermometry equation and local water oxygen isotope values calculated by Grimes *et al.* (2005: *Geology* 33, 189-193) has allowed the calculation of palaeotemperature values at 6 distinct horizons. By assuming that the changes in the $\delta^{18}\text{O}$ of seawater, as reported by Katz *et al.* (2008: *Nature Geoscience* 1, 329-334), are also mirrored by changes in local water oxygen isotope values, palaeotemperatures for the intervening data points were also calculated. These results record a decrease in mean palaeotemperatures during the stepwise shift prior to the EOGM, but not across the event itself.

Micro-milled growth bands from whole well preserved *Viviparus lenthus* specimens were also isotopically analysed to determine if there were any changes in seasonality across the EOGM. Minimum and maximum $\delta^{18}\text{O}$ values suggest that the decrease in mean palaeotemperatures prior to EOGM was controlled by a decrease in maximum summer temperatures. This confirms Coxall *et al.* (2005: *Nature* 433, 53-57) record, where a $\delta^{18}\text{O}$ increase in benthic foraminiferal calcite coincides with an eccentricity minimum and low-amplitude obliquity change which they argued favoured cool summers and promoted ice growth during step 1 of the Eocene / Oligocene transition. The occurrence of cooler winters post the EOGM is also suggested by our results and in line with the results reported by Ivany *et al.* (2000) *Nature*, 407: 887 - 890).