

Atmospheric radiocarbon as a Southern Ocean wind proxy over the last 1000 years

K.B. Rodgers (1), S. Mikaloff Fletcher (1), E. Galbraith (1), J.L. Sarmiento (1), A. Gnanadesikan (2), R.D. Slater (1), and T. Naegler (3)

(1) AOS Program, Princeton University, Princeton, USA (kroddgers@princeton.edu), (2) Geophysical Fluid Dynamics Lab, Princeton USA, (3) University of Heidelberg, Heidelberg Germany

Measurements of radiocarbon in tree rings over the last 1000 years indicate that there was a pre-industrial latitudinal gradient of atmospheric radiocarbon of 3.9-4.5 per mil and that this gradient had temporal variability of order 6 per mil. Here we test the idea that the mean gradient as well as variability in the gradient is dominated by the strength of the winds over the Southern Ocean. This is done using an ocean model and an atmospheric transport model. The ocean model is used to derive fluxes of $^{12}\text{CO}_2$ and $^{14}\text{CO}_2$ at the sea surface, and these fluxes are used as a lower boundary condition for the transport model. For the mean state, strong winds in the Southern Ocean drive significant upwelling of radiocarbon-depleted Circumpolar Deep Water (CDW), leading to a net flux of $^{14}\text{CO}_2$ relative to $^{12}\text{CO}_2$ into the ocean. This serves to maintain a hemispheric gradient in pre-anthropogenic atmospheric $\delta\text{-c}^{14}\text{C}$. For perturbations, increased/decreased Southern Ocean winds drive increased/decreased uptake of $^{14}\text{CO}_2$ relative to $^{12}\text{CO}_2$, thus increasing/decreasing the hemispheric gradient in atmospheric $\delta\text{-c}^{14}\text{C}$. The tree ring data is interpreted to reveal a decrease in the strength of the Southern Ocean winds at the transition between the Little Ice Age and the Medieval Warm Period.