

Thermal Perturbation Sensing for Monitoring Subsurface CO₂ Transport

J. Henniges (1), B. M. Freifeld (2), B. Norden (1), and E. Huenges (1)

(1) GFZ German Research Centre For Geosciences, Geothermics, Potsdam, Germany (janhen@gfz-potsdam.de), (2) Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA (bmfreifeld@lbl.gov)

In the framework of the CO₂SINK project, a novel thermal borehole measurement method is being applied to enhance monitoring of brine and CO₂ transport. The distributed thermal perturbation sensor (DTPS) consists of two elements, a linear heater providing constant heating along the axis of the wellbore, and a distributed temperature sensor (DTS), for measuring temperatures. By creating a heat pulse and simultaneous registration of the change in temperature along a borehole, we can draw conclusions regarding the thermal properties of the formation and the flow processes inside the reservoir. As part of the CO₂SINK project, one injection and two observation wells were equipped with permanently installed fiber-optic DTS cables for monitoring of borehole temperatures. Using an additional electrical heating cable, the boreholes were heated with a power of 20 W/m for intervals of about two days, during which the borehole temperature increased \sim 6 °C. Preliminary results from numerical inversions of the measured heating curves prior to injection show a good correlation to the thermal conductivities measured on core samples. As CO₂ injection progresses at CO₂SINK, the CO₂ saturation in the formation around the injection and observation boreholes is expected to increase, resulting in a measurable reduction in the formation's thermal conductivity.