

Optical - thermal properties of synthetic anorthite/silica glass: Phonon thermal conductivity and specific refraction of light

S. Maj

Institute of Geophysics, Pol.Acad.Sci., Warsaw, Poland (MAJ@IGF.EDU.PL, 0048-22-69-15-915)

An interesting relationship between the Phonon Thermal Conductivity, k , and seismic parameter F for silicates and oxides related to the Earth's mantle is recalled. The theoretical investigation was based on the Debye's model of lattice vibrations and the Anderson-Jordan seismic equation of state. Thermodynamical laboratory data of main minerals in the form of polycrystalline aggregates were also used. At room temperature (T_0) relationship of the form $\log k = (5/6)\log F - 0.7422$ is valid. A correlation between the optical specific refraction $R_{sp} = (n-1)/d$ and pressure p from 0 to 6 GPa for synthetic anorthite/silica glass is considered. This synthetic glass with the density $d = 2.60$ g/cc at ambient pressure had the composition: $\text{CaO}/\text{Al}_2\text{O}_3/4[\text{SiO}_2]$ and contained about 67% of silicon dioxide. Experimental data on the refractive indices and hydrostatic pressures and also on the density at $p = 0$ were taken from R.G Kuryaeva and N.V. Surkov (2008). Let us assume that the specific refraction value $R_{sp}(p=0) = [n(0)-1]/d(0) = 0.2035$ cc/g is about constant in the whole 0-6 GPa range. In this case, the derivative $dR_{sp}/dp = 0$ and we have a very simple equation: $dn/dp = R_{sp}/F$. Since the mean value of pressure gradient dn/dp is about 0.0167 [1/GPa] at the pressure from 0 to 1.25 GPa, we can write that $F(p=0) = 12.19$ $(\text{km}/\text{s})^2$ for synthetic anorthite/silica glass. Thus we obtain the characteristic value of $k(0) = 1.46$ W/m K. It is in good agreement with the PTC of natural silica glass (lechatelierite) or similar synthetic phases as, e.g., porosiles.