

The time-dependent emission of molecular iodine from *Laminaria digitata* measured with incoherent broadband cavity-enhanced absorption spectroscopy

S. DIXNEUF

University College Cork, Physics Department, CORK, Ireland (s.dixneuf@ucc.ie, 00353214276949)

The release of molecular iodine (I_2) from the oceans into the atmosphere has been recognized to correlate strongly with ozone depletion events and aerosol formation in the Marine Boundary Layer (MBL), which affects in turn global radiative forcing. The detailed mechanisms and dominant sources leading to the observed concentrations of I_2 in the marine troposphere are still under intense investigation. In a recent campaign on the Irish west coast at Mace Head Atmospheric Research Station [1], it was found that significant levels of molecular iodine correlated with times of low tide, suggesting that the emission of air-exposed macro-algae may be a prime source of molecular iodine in coastal areas [2]. To further investigate this hypothesis we tried to detect the I_2 emission of the brown seaweed *Laminaria digitata*, one of the most efficient iodine accumulators among living systems, directly by means of highly sensitive incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) [3]. IBBCEAS combines a good temporal and spatial resolution with high molecule-specific detection limits [4] comparable to that of typical LP-DOAS. IBBCEAS thus complements LP-DOAS in the search for sources of tropospheric trace gases.

In this presentation the first direct observation of the time dependence of molecular iodine emission from *Laminaria digitata* will be shown. Plants were studied under naturally occurring stress for quasi *in situ* conditions for many hours. Surprisingly, the release of I_2 occurs in short, strong bursts with quasi-oscillatory behaviour, bearing similarities to well known "iodine clock reactions".

References

- [1] Saiz-Lopez A. & Plane, J. M. C. Novel iodine chemistry in the marine boundary layer. *Geophys. Res. Lett.* 31, L04112 (2004) doi:10.1029/2003GL019215.
- [2] McFiggans, G., Coe, H., Burgess, R., Allan, J., Cubison, M., Alfarra, M. R., Saunders, R., Saiz-Lopez, A., Plane, J. M. C., Wevill, D. J., Carpenter, L. J., Rickard, A. R. & Monks, P. S. Direct evidence for coastal iodine particles from *Laminaria* macroalgae - linkage to emissions of molecular iodine. *Atmos. Chem. Phys.* 4, 701–713 (2004).
- [3] Fiedler, S. E., Hese, A., Ruth, A. A. Incoherent broad-band cavity-enhanced absorption spectroscopy. *Chem. Phys. Lett.* 371, 284–294 (2003).
- [4] Vaughan, S., Gherman, T., Ruth, A. A., Orphal, J. Incoherent broadband cavity-enhanced absorption spectroscopy of the marine boundary layer species I_2 , IO and OIO . *Phys. Chem. Chem. Phys.* 10, 4471–4477 (2008).