

Estimating the production of lightning NO_x from satellite observations of NO₂

S. Beirle and T. Wagner

MPI Chemie Mainz, Satellite remote sensing, Mainz, Germany (beirle@mpch-mainz.mpg.de)

The amount of nitrogen oxides (NO_x=NO+NO₂) produced by lightning is a key uncertainty for the assessment of tropospheric ozone production. In this study, we discuss the potential and limitations of satellite observations of NO₂ to estimate lightning NO_x (LNO_x).

Despite the mean NO₂ enhancements due to lightning being rather small (compared to strong anthropogenic sources), LNO_x has been identified clearly in satellite observations which show (a) average column enhancements over lightning active regions as well as (b) a direct enhancement for measurements coinciding with thunderstorms in space and time. The task is to transfer these qualitative findings to quantitative estimates that actually improve our knowledge of LNO_x production.

In a model study, we assess the sensitivity of NO₂ satellite observations for LNO_x under cumulonimbus cloud conditions: a cloud resolving model, providing profile information on NO_x, NO₂, and clouds, was used to derive synthetic "satellite measurements", i.e. slant column densities of NO₂ for cloudy sky, involving the Monte-Carlo Radiative Transfer Model McArtim. From this study we find on average a "sensitivity" of 0.46 (0.37-0.55), i.e. the observed slant column of NO₂ is expected to be 46% of the vertical LNO_x column. Hence, a strong thunderstorm should result in a clear column enhancement for direct satellite overpass.

Several such satellite measurements coinciding with lightning have been found over tropical oceans. Continental thunderstorms, however, are missed due to the fact that current UV/vis instruments operate in the morning (GOME, SCIAMACHY, GOME-2) or shortly after noon (OMI), whereas continental lightning activity peaks in late afternoon. To study LNO_x over continents, one has to relate the observed NO₂ columns to LNO_x produced the previous day(s). In addition, one has to keep in mind that in particular over continents, convection of anthropogenic NO_x might interfere with LNO_x.

We present estimates of LNO_x production for both, freshly produced LNO_x as well as aged LNO_x, from the relation of observed NO₂ column enhancements to flash rates from LIS, NLDN, and WWLLN. From the studies performed so far, we find LNO_x per flash productions that correspond to a global release of about 1-2 Tg [N]/yr. This is significantly lower than the often used estimate of 5 Tg [N]/yr.

Ongoing studies have to deal with the rather high variability of the NO₂ columns. In addition, systematic regional (and possibly seasonal) differences of the LNO_x production, which have been discussed recently, are analyzed. In particular for this, the time series with global coverage available from satellite shows its high potential.