

Uranium-lead dating of perovskite from the Afrikanda plutonic complex (Kola Peninsula, Russia) using LA-ICP-MS.

E. Reguir, A. Camacho, P. Yang, A.R. Chakhmouradian, and N.M. Halden

University of Manitoba, Geological Sciences, Winnipeg, Canada (umreguir@cc.umanitoba.ca)

Perovskite (CaTiO_3) is a common early crystallizing accessory phase in a variety of alkaline rocks, and has been shown to contain enough U and Th for U-Pb dating. U and Pb analysis of perovskite has been primarily carried out using the SHRIMP or ID-TIMS techniques, and the resulting U-Pb dates commonly yield the emplacement age of the host rock. To our knowledge, only one U-Pb study of perovskite has been done using the LA-ICP-MS (Cox and Wilton, 2006). Some of the advantages of this method over the SHRIMP and ID-TIMS techniques include greater speed and lower cost of analysis.

In this work, the U-Pb ages of perovskite from the Afrikanda plutonic complex (Russia) were obtained *in situ* using the LA-ICP-MS. The measured $^{238}\text{U}/^{206}\text{Pb}$ and $^{207}\text{Pb}/^{206}\text{Pb}$ ratios were corrected for time-dependent mass-bias using the well-calibrated zircon standard GJ-1 (608.5 ± 0.4 Ma; Jackson et al., 2004). On a Tera-Wasserburg diagram (Tera and Wasserburg, 1972) the analyses of perovskite from two magmatic phases (clinopyroxenite and carbonatite) plot in separate clusters. Although the variations in the $^{238}\text{U}/^{206}\text{Pb}$ and $^{207}\text{Pb}/^{206}\text{Pb}$ ratios within each group are small, there is enough dispersion between the two clusters to obtain a reasonably precise age of 375 ± 13 Ma (2σ ; MSWD = 0.23), which strongly suggests that the carbonatitic rocks are broadly coeval with the clinopyroxenite. The only other isotopic study on the Afrikanda Complex was done on a clinopyroxenite using the Rb-Sr method and yielded a whole rock-mineral (perovskite, biotite, augite and apatite) isochron age of 364.0 ± 3.1 Ma (2σ ; MSWD = 0.72). This age is within error of our U-Pb date, which demonstrates that LA-ICP-MS-based U-Pb dating of perovskite can serve as a reliable geochronological tool.

References

Cox, R.A. and Wilton, D.H.C. (2006) U-Pb dating of perovskite by LA-ICP-MS: An example from the Oka carbonatite, Quebec, Canada. *Chem. Geol.*, **235**, 21–32.

Jackson, S.E., Pearson, N.J., Griffin, W.L. and Belousova, E.A. (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to *in situ* U-Pb zircon geochronology. *Chem. Geol.*, **211**, 47-69.

Kramm, U., Kogarko, L.N., Kononova, V.A. and Vartiainen, H. (1993) The Kola alkaline province of the CIS and Finland. *Lithos*, **30**, 33-44.

Tera, F. and Wasserburg, G.J. (1972) U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. *Earth Planet. Sci. Lett.*, **14**, 281-304.