

Landscape evolution and erosion rates: advantages of incorporating cosmogenic ^{21}Ne with ^{26}Al and ^{10}Be

L. Di Nicola (1), S. Strasky (2), N. Akçar (3), P.W. Kubik (4), R. Wieler (2), and F.M. Stuart (1)

(1) Scottish Universities Environmental Research Centre (SUERC), Glasgow, United Kingdom (l.dinicola@suerc.gla.ac.uk, f.stuart@suerc.gla.ac.uk), (2) Institute of Isotope Geochemistry and Mineral Resources, ETH Zurich, Switzerland (stefan.strasky@swisstopo.ch, wieler@erdw.ethz.ch), (3) Institute of Geological Sciences, University of Bern, Switzerland (akcar@geo.unibe.ch), (4) Paul Scherrer Institute, c/o Institute of Particle Physics, ETH Zurich, Switzerland (kubik@phys.ethz.ch)

In situ-produced cosmogenic nuclides are now widely used to date geomorphic features and, when combined with landscape analysis, allows conclusions about climate events to be drawn. The commonly-used cosmogenic radionuclide pair ^{26}Al and ^{10}Be are measured in the same quartz fraction and the different half-lives allows Quaternary (and older) exposure ages and erosion histories to be quantified. However, ^{26}Al and ^{10}Be half lives differ by only a factor of two and they share the same spallogenic production profile. Typically analytical uncertainties mean that the $^{26}\text{Al}/^{10}\text{Be}$ ratio has only a limited ability to resolve erosion and exposure parameters. For example, the ^{26}Al - ^{10}Be pair frequently does not allow simple exposure histories (i.e. zero erosion) to be resolved from complicated exposure histories involving erosion and/or burial.

Combining the stable cosmogenic nuclides (^3He and ^{21}Ne) with radionuclides offers the possibility of quantifying erosion rates (less than 80 cm/Myr) with higher resolution. Additionally this combination provides a better quantification of complex exposure histories. For instance, in stable landscapes where exposure-burial-exposure histories are on 100,000 year to million year timescales, the measurement of cosmogenic noble gas isotopes are required to allow surface process rates to be quantified.

Until very recently studies combining the stable and radioactive cosmogenic nuclides have been sparse. Using examples from glacial deposits and glacially-shaped bedrock from Northern Victoria Land, Antarctica, we will demonstrate how the incorporation of cosmogenic ^{21}Ne with ^{26}Al and ^{10}Be can be used to refine and unravel the glacial history of the region. When ^{26}Al - ^{10}Be systematics rule out significant periods of burial they rarely allow erosion rates to be quantified. By combining ^{10}Be with ^{21}Ne , we show that erosion rates of 10 to 80 cm/Myr can be measured with a precision of 30%. In other cases we show that although there is no evidence of burial from ^{10}Be and ^{26}Al of erratics, ^{21}Ne concentrations require a complex pre-exposure history, often with a few million years of burial prior to most recent exposure.