

The Lateglacial to Holocene transition as recorded by glacier fluctuations

I. Schindelwig (1), N. Akçar (1), P. W. Kubik (2), and C. Schlüchter (1)

(1) Institute of Geological Sciences, University of Bern, Baltzerstr. 1 & 3, 3012 Bern (schindelwig@geo.unibe.ch), (2) Paul Scherrer Institute, c/o Institute of Particle Physics, ETH Zürich, 8093 Zürich

Examination of glacier associated records may contribute to a better understanding of the ice-continent-ocean-atmosphere interactions, since glacial deposits related to short-term temperature fluctuations, driven by climate change, might be preserved. Surface exposure dating (SED) of such glacial deposits can improve the chronology of climate records. The western Swiss Alps repeatedly hosted mountain glaciers during the Pleistocene, and even during the Last Glacial-Interglacial transition, with abundant stadial and interstadial transitions during the Lateglacial (e.g. Björck et al. 1998).

In this study, the adjacent valleys of Belalp and Great Aletsch (catchment area is generally south facing) in the western Swiss Alps are investigated. The slow responding Great Aletsch valley glacier shows only one confirmed moraine ridge related to the Lateglacial (Egesen stadial) (Kelly et al. 2004). However, the rather fast responding Unnerbäch cirque (recent) glacier at the Belalp (a similarly exposed - and tributary - valley to the Great Aletsch valley), features 6 individual lateral-terminal moraine ridges related to Lateglacial and early Holocene times. In the Belalp valley, 22 erratic boulders from four out of six well-preserved moraines were sampled in order to establish a detailed chronological framework. From the Great Aletsch valley four samples (boulder and ice moulded bedrock) of the lateral moraine were collected for SED.

Our ^{10}Be exposure dates suggest a stabilization of the Great Aletsch moraine related to the Egesen advance in the beginning of the Younger Dryas, assuming that the ages of the oldest erratic boulders on a single moraine ridge are representative for the time of moraine stabilization (Putkonen & Swanson, 2003). According to our investigations on the right-lateral moraine and the dataset (recalculated from Kelly et al. 2004) for the left-lateral moraine, the Egesen stadial is the first preserved re-advance after the last deglaciation. In contrast, the glacier at the Belalp shows multiple advances during the Lateglacial to early Holocene. ^{10}Be exposure age data suggest that the outer moraine ridge can be an advance older than the Egesen stadial and younger than the LGM. This is in concert with other Younger Dryas related glacial landsystems in Switzerland (reviewing the outer moraine ages e.g. Julier Pass, Ivy-Ochs et al. 1996, 2008).

A large number of Lateglacial moraines have been identified and relative correlations on the basis of elevation, equilibrium line altitude (Gross et al. 1977; Maisch, 1987) and morphological characteristics have been established. Nevertheless, it remains important to refine the absolute chronology in order to put further temporal constraints on these relative frameworks. This allows the allocation of such absolutely dated deposits to distinguished cold phases (Preboreal oscillation, Younger Dryas, Aegelsee oscillation) thus underlining their potential significance in the context of regional, as well as global Lateglacial climate conditions. The ^{10}Be exposure ages from an inner moraine ridge are in a good agreement with the recalculated previously published ^{10}Be exposure ages from the Egesen moraines in the Alps. This suggests a synchronicity of the Egesen stadial in the European Alps at the end of the Younger Dryas cold phase.

REFERENCES

Björck, S., Walker, M. J.C., Cwynar, L.C., Johnson, S., Knudsen, K-L., Lowe, J. J. & Wohlfarth, B. (1998): An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group. *Journal of Quaternary Science*, 13, 283-292.

Gross, G., Kerschner, H. & Patzelt, G. (1977): Methodische Untersuchungen über die Schneegrenze in alpinen Gletschergebieten. *Zeitschrift für Gletscherkunde und Glazialgeologie*, 12, 223-251.

Ivy-Ochs, S., Kerschner, H., Reuther, A., Preusser, F., Heine, K., Maisch, M., Kubik, P.W. & Schlüchter, C. (2008): Chronology of the last glacial cycle in the European Alps. *Journal of Quaternary Science*, 23, 559-573.

Ivy-Ochs, S., Schlüchter, C., Kubik, P. W., Synal, H.-A., Beer, J., Kerschner, H. (1996): The exposure age of an Egesen moraine at Julier Pass, Switzerland, measured with the cosmogenic radionuclides ^{10}Be , ^{26}Al and ^{36}Cl . *Eclogae geol. Helv.*, 89, 1049-1063.

Kelly, M.A., Kubik, P.W., von Blanckenburg, F. & Schlüchter, C. (2004): Surface exposure dating of the Great Aletsch Glacier Egesen moraine system, western Swiss Alps, using the cosmogenic nuclide ^{10}Be . *Journal of Quaternary Science*, 19, 431-441.

Maisch, M. (1987): Zur Gletschergeschichte des alpinen Spätglazials: Analyse und Interpretation von Schneegrenzdaten. *Geographica Helvetica*, 42, 63-71.

Putkonen, J. & Swanson, T. (2003): Accuracy of cosmogenic ages for moraines. *Quaternary Research*, 59, 255-261.