

Emission of molecular chlorine from Earth's volcanoes: a case of catalytic oxidation

M Zelenski (1), Y Taran (2), S Shapar (3), and N Gorbach (3)

(1) Institute of Experimental mineralogy, Chernogolovka, Russia, (2) Instituto de Geofísica, UNAM, México, D. F., (3) Institute of Volcanology and Seismology, Petropavlovsk, Russia

Up to 25 mg/m³ (10 ppmv) of molecular chlorine Cl₂ together with 450 mg/m³ (270 ppmv) of HCl have been measured in August 2008 in gases escaping from New Tolbachik scoria cones, Kamchatka. This is the first natural point source of Cl₂ in troposphere. The cones (55° [U+F0B0] 41' N, 160° [U+F0B0] 14'E, 1200m asl) were formed during major Tolbachik Fissure eruption of basaltic lava in 1975. Thirty-three years after eruption, numerous discharges of hot gas (100-430 °C) are scattered throughout craters' rim. Gas releases through small holes and fissures in altered rocks. This gas has a composition unusual for volcano discharges. Actually, this is hot air (>98%) with admixture of water vapor (1-2%) and acid species including CO₂ 0.07-0.09 %, HCl 150-350 ppmv, Cl₂ 5-10 ppmv, some SO₂, HF etc. To determine Cl₂, HCl and SO₂, we used colorimetric gas detector tubes. Also, we filled evacuated bottles with dry gas to measure N₂, O₂, Ar and CO₂ by gas chromatography.

To ensure the possibility of such gas composition, we made thermochemical calculations (HSC 6.1). As a starting point, we used measured composition of gas. The model predicts equimolar amounts of Cl₂ and HCl at 200 °C. Equilibrium mixing ratio of NO₂ is 3 orders of magnitude lower Cl₂; other possible oxidizing species (ClO_X, NO, HNO₃) are in minor amounts. Therefore we concluded that Cl₂ was the only oxidizing species to be measured by our detector tubes. Also, model has shown that little amount of SO₂ can coexist with Cl₂ in dilute mixture with air at 200-400 °C.

We account high concentrations of Cl₂ in Tolbachik gases for catalytic oxidation of HCl inside the cones: 4HCl + O₂ = Cl₂ + 2H₂O. Ambient air seeps into highly porous material of the cone, is being heated inside and mixes with HCl that is slowly released by scoria particles. This is a natural analogue of Deacon process well known in industry. To check this hypothesis, we made a series of experiments. In lab, we filled silica glass tube with basaltic scoria and let pass through it a slow flow of air with admixture of diluted hydrochloric acid. After being roasted at 600 °C, basaltic scoria acquired strong catalytic properties. Concentration of Cl₂ in gas after passing the tube with roasted basalt was 2.5 orders of magnitude higher than in a blank run (the tube filled with silica granules). The possible catalyst is fine hematite Fe₂O₃ formed on surface of scoria particles at 600 °C in oxidizing atmosphere. We also observed formation of different copper chlorides like CuCl₂, KCuCl₃ at the outlet of the tube. These substances are known to be the most effective catalysts in industrial Deacon process. However, all these chlorides were deposited outside the reactor and seemed to have minor contribution in the catalytic process.

Our lower estimate of total release of Cl₂ from Tolbachik cones is 0.5 g/s that corresponds to 15 tons per year. This is a very rough assessment. More precise measurements of gas composition as well as discharge rates at Tolbachik cones are required.