Geophysical Research Abstracts, Vol. 11, EGU2009-14024-2, 2009 EGU General Assembly 2009 © Author(s) 2009

Compound Solitons of Intense Internal Waves on the Oceanic Shelf

K.A. Gorshkov (1), I.A. Soustova (1), N.V. Zaizeva (2), and L.M. Shevz (2)

(1) Institute of Applied Physics, Russian Academy of Science 46 Uljanov Str., 603600 Nizhny Novgorod, Russia email: soustova@hydro.appl.sci-nnov.ru, (2) (2) Department of Applied Mathematics, Nizhny Novgorod State Technical University, 24 Minin Str., 603600 Nizhny Novgorod, Russia

It is well known that tides may form large-amplitude waves in the coastal zones of the oceans and seas. The evolution of such waves is usually described within the framework of model equations such as the Kortewegde Vries equation and its modifications (for example, the Gardner equation) with variable coefficients. Intense internal waves in this case may frequently be represented in the form of solitons whose parameters slowly vary during propagation. The solitons expand in the course of transformation and approach the critical ones that may be represented as a superposition of kinks – change of fields of different polarities. In the current work the evolution of such compound solitons on a variable-depth shelf is analysed using a modified approximate approach. Results of the approximate analysis are compared with data of numerical simulation.