

Spatio-temporal habitat heterogeneity across an Alpine stream system

N. Dickson (1), L.E. Brown (1), J.L. Carrivick (1), and L. Fureder (2)

(1) University of Leeds, Earth and Biosphere Institute, Geography, Leeds, United Kingdom (j.l.carrivick@leeds.ac.uk), (2) University of Innsbruck, Austria

Alpine stream systems provide unique habitats for riverine biota as a result of their dynamic flow, water temperature and suspended sediment regimes. Understanding how these spatio-temporal physicochemical variations influence macroinvertebrate communities could provide insights into how alpine lotic ecosystems are likely to respond to climate change or other more direct human influences (abstraction/regulation). However, detailed year-round data sets are rare for alpine stream systems, yet such knowledge is clearly a prerequisite to obtaining a holistic understanding of how these ecosystems function. This paper reports findings from year-round data collection at the Odenwinkelkees Glacier braidplain, Austrian Alps. Repeat aerial photography showed that the extent of flowing channels varied both diurnally and seasonally primarily as a consequence of meltwater pulses. Analysis of physicochemical data revealed high heterogeneity of flow regimes, water temperature and turbidity both spatially (reach to basin-scale) and temporally. For example the average discharge and turbidity were lower for predominantly groundwater-fed sites compared with meltwater-fed channels but water temperature was higher. This heterogeneity appears to play a key 'filtering' role underpinning spatio-temporal patterns of benthic macroinvertebrates.