



## Giant impacts on early Mars and the cessation of the Martian dynamo

J Roberts (2), R. Lillis (3), and M. Manga (1)

(1) Earth and Planetary Science, UC Berkeley, USA, manga@seismo.berkeley.edu, (2) Applied Physics Lab, Johns Hopkins University, USA, James.Roberts@jhuapl.edu, (3) Space Sciences Lab, UC Berkeley, USA, rlillis@ssl.berkeley.edu

Although Mars currently has no global dynamo-driven magnetic field, widespread crustal magnetization provides strong evidence that such a field existed in the past. The absence of magnetization in the younger large Noachian basins suggest that a dynamo operated early in Martian history, but stopped in the mid-Noachian. Within a 100 Ma period, 15 giant impacts occurred coincident with the disappearance of the global magnetic field (Lillis et al., GRL 2008). Here we investigate a possible causal link between the giant impacts during the early and mid-Noachian and the cessation of the Martian dynamo at about the same time. Using 3D spherical mantle convection models, we find that impact heating associated with the largest basins ( $D > 2500$  km) can cause the global heat flow at the core-mantle boundary to decrease significantly (10-40%). Such a reduction in core heat flow may have led to the cessation of the Martian dynamo.