

Observations of energetic radiation bursts from thunder activities

H. Tsuchiya (1), T. Enoto (2), T. Torii (3), T. Yuasa (2), S. Yamada (2), T. Kitacuhi (2), K. Nakazawa (2), H. Kato (1), M. Okano (1), K. Makishima (1,2)

(1) RIKEN, Cosmic Radiation Laboratory, Wako, Japan (htsuchiya@riken.jp, +81-48-462-4640), (2) Department of Physics, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, (3) Environmental monitoring section, Tsuruga Head Office, Japan Atomic Energy Agency, 2-1, Shiraki, Tsuruga, Fukui 919-1279, Japan

Energetic radiation bursts have been observed during strong thunderstorms by ground-based detectors as well as high-mountain ones. Those radiation bursts are thought to result from runaway electrons originating from electrons accelerated by strong electric field in lightning discharges and thunderclouds, and hence provide a valuable key to understand particle acceleration in thunder activity. Interestingly, they can be categorized into two bursts by their duration. One consists of short bursts lasting for milli-seconds or less. The other comprises long bursts having duration of a few seconds. In order to better understand both short and long bursts, we have conducted experiments at coastal area of the Japan Sea and a 2770-m altitude observatory. In this talk, we will report on those experiments, showing the two experiments has successfully observed both short and long bursts. Especially, we will focus on high-energy radiations extending over MeV energies, and then discuss a plausible model to explain how those high-energy radiations are produced in thunder activity.