

Isotopologue signatures of N₂O from denitrification in soil

R. Well and H. Flessa

University of Goettingen, Soil Science of Temperate and Boreal Ecosystems, Goettingen, Germany (rwell@gwdg.de, +49551393310)

There is few information on N₂ fluxes from denitrification in the field, because this process is difficult to measure in situ. Isotopologue signatures of N₂O such as ^{18}O , average ^{15}N ($^{15}\text{N}_{\text{bulk}}$) and ^{15}N site preference (SP = difference in ^{15}N between the central and peripheral N positions of the asymmetric N₂O molecule) can be used to constrain the atmospheric N₂O budget and to characterize N₂O turnover processes including N₂O reduction to N₂. However, the use of this approach to study N₂O dynamics in soils requires knowledge of isotopologue fractionation factors () for the various partial processes involved, e.g. N₂O production by nitrification or denitrification, N₂O reduction by denitrification and diffusive transport. The aim of our study was to investigate whether isotopologue signatures of soil-emitted N₂O can be used to estimate N₂O reduction, and accordingly N₂ formation.

Two arable soils were incubated in the laboratory under varying conditions in order to manipulate the partial processes of N₂O turnover. of ^{18}O , $^{15}\text{N}_{\text{bulk}}$ and SP was determined in experiments, where only one of the partial processes was governing the isotopic signature of N₂O in the incubation system of the respective treatment. of N₂O reduction to N₂ was derived by (i) comparing treatments with and without inhibition of N₂O reduction (indirect approach) or (ii) by monitoring the time course of isotopic signatures of N₂O applied to the headspace of NO₃-depleted anaerobic soil (direct approach). Moreover, we incubated the soils under conditions favoring denitrification (high moisture, low O₂ level, NO₃- fertilization) and monitored isotopic signatures of emitted N₂O. In parallel experiments with ^{15}N -labeled NO₃- pool we measured N₂ fluxes directly. Isotopologue signatures were compared with $^{15}\text{N}_2$ flux data in order to check their relationship with N₂ production.

References

Well R, Kurganova, I., Lopes, V., Flessa H. (2006), Isotopomer signatures of N₂O emitted from an arable loess soil under different moisture conditions - a soil microcosm study. *Soil Biology and Biochemistry* 38, 2923 - 2933.