

Late Quaternary right-lateral slip rates of active faults adjacent to lake Qinghai, northeastern margin of the Tibetan Plateau

D.-Y. Yuan (1), J.-D. Champagnac (2), W.-P. Ge (1), P. Molnar (3), P.-Z. Zhang (4), W.-J. Zheng (4), H.-P. Zhang (4), and M.-J. Liang (1)

(1) Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, China, (2) Universität Hannover, Institut für Mineralogie, Hannover, Germany (champagnac@gmail.com), (3) Department of Geological Sciences, and CIRES, University of Colorado, Boulder, Colorado, 80309, USA, (4) State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China

Combining the terrace riser offsets with terrace ages dated by ^{14}C , OSL and ^{10}Be techniques, we determine average strike slip rates of Elashan and Riyueshan faults, two north-northwest-trending strike-slip faults along the western and eastern sides of the lake Qinghai, northeastern margin of the Tibetan plateau, to be about 1.0 ± 0.2 mm/yr and 1.2 ± 0.2 mm/yr, respectively.

Between them, the Qinghainanshan fault consists of three secondary thrust faults, whose total vertical slip rate and shortening rate are $0.4\text{--}1.0$ mm/yr and $0.2\text{--}1.2$ mm/yr, respectively.

The relatively low slip rates in this region reflect distributed deformation. The total right-lateral offsets of the geological contacts, which were interpreted from 1:200,000-scale Qinghai regional geological maps of the region, are about 8.8–11.9 km along the Elashan fault and 10.9–11.6 km for the northern segment of Riyueshan fault. If long-term slip rates were constant during late Cenozoic time, initiation of dextral movement would be 10.3 ± 3.6 Ma and 9.4 ± 2.3 Ma for the two strike-slip faults, consistent with records of tectonic deformation in Cenozoic basins nearby.

Our study highlights a stage of tectonic deformation in the northeastern margin the Tibetan plateau beginning near $\tilde{10}$ Ma, long after the collision between India and Eurasia began.