

Quantification of glacial erosion in the Alps using OSL-thermochronology

F. Herman (1), J.-D. Champagnac (2), E.J. Rhodes (3), M. Jaiswal (4), Y.-G. Chen (4), and J.-L. Schwenninger (5)
(1) ETH Zürich, Geologisches Institute, Switzerland, (2) Universität Hannover, Institut für Mineralogie, Hannover, Germany, (3) Environmental and Geographical Sciences, Manchester Metropolitan University, United Kingdom, (4) Department of Geosciences, National Taiwan University, Taipei 106, Taiwan, (5) School of Archaeology 36 Beaumont Street Oxford OX1 2PG United Kingdom

The impact of glaciations on the topography of the Alps is still unclear: Long-term denudation rate determined by low-T thermochronology are in the range of 0.2 to 1 mm/yr, and increased during the Plio-Quaternary by 3 fold (Vernon et al., 2008). Such an increase is also documented by peri-alpine sediment budget (Kuhleman, 2000), with a two to three fold increase in sediment yields since 5-3 Ma. This increase was considered as evidence of a climatically-driven surface process change, a large component of which was attributed to increased precipitation (Cederbom et al., 2004) and erosion by glacial processes (Champagnac et al., 2007). The transition from full fluvial to glaciated landscape must have involved major changes in topography and erosion rates, in particular given the changes in sediment yield (Kuhleman, 2000; Muttoni et al 2003). However, the timing of the onset of intense glacial erosion as well as its rates are still ambiguous. The glacial erosion seems to have accelerated around 0.9 Ma as suggested by the ten fold increase of incision rates of a valley in the Central Alps (Häuselmann et al., 2007), and by information about vegetation and sedimentologic changes (Muttoni et al., 2003; Scardia et al., 2006). There is however no direct quantification of topographic change during the Plio-Quaternary.

We present here how we use OSL-thermochronology, a new thermochronometer of exceptionally low closure temperature (about 30-400 C) (Herman et al subm.) and a glacial erosion model (Herman and Braun 2008) to estimate topographic changes in the Alps in response to glaciations. Because of its low closure temperature, OSL-thermochronology enables quantification of events of less than 1 Ma at very small wavelength of the topography. We collected two vertical profiles, one in the Zermatt Valley (Valais) and one in Maurienne Valley (Savoy). We infer from these results changes in topography, date and quantify relief creation under glacial - interglacial cycles.

Cederbom, C.E, et al., Climate induced rebound and exhumation of the European Alps. *Geology* 32, 709-712 (2000).

Champagnac, J.-D., et al., Quaternary erosion-induced isostatic rebound in the western Alps. *Geology* 35, 195-198 (2007).

Häuselmann P., et al., et al. Abrupt glacial valley incision at 0.8 Ma dated from cave deposits in Switzerland. *Geology* 35, 33-42 (2007).

Herman F. and Braun J. Evolution of the glacial landscape of the Southern Alps of New Zealand: Insights from a glacial erosion model, *J. Geophys. Res.*, 113, F02009, doi:10.1029/2007JF000807 (2008).

Herman F., Rhodes E.J. and Braun J. A new thermochronometer reveals steady state relief and exhumation in a small active orogen during the last glacial cycle, submitted.

Kuhleman J., et al., Quantifying tectonic versus erosive denudation by the sediment budget: the Miocene core complexes of the Alps, *Tectonophysics* 330, 1-23 (2000).

Muttoni G., et al., Onset of major Pleistocene glaciations in the Alps. *Geology* 31, 989-992 (2003).

Scardia, G., et al., Subsurface magnetostratigraphy of Pleistocene sediments from the Po Plain (Italy): Constraints on rates of sedimentation and rock uplift. *Bulletin of the Geological Society of America* 118(11-12), 1299-1312 (2006).

Vernon, A.J., et al., Increase in late Neogene denudation of the European Alps confirmed by analysis of a fission-track thermochronology database. *Earth and Planetary Science Letters*, 270 (3-4), pp. 316-329 (2008).