

Long-range Memory Effect and Generalized Scaling in the Distribution of Dry Intervals in Gauge-derived Rainfall Time Series

P. K. Kundu (1,2) and R. K. Siddani (3)

(1) Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD 21228, USA, (2) Code 613.2, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA (prasun.k.kundu@nasa.gov), (3) Schering-Plough, Kenilworth, NJ 07033, USA

[12pt]report

It is common experience that rainfall is intermittent in space and time. This is reflected by the fact that the statistics of area- and/or time-averaged rain rate is described by a mixed distribution with a nonzero probability of having a sharp value zero. In this work we have explored the dependence of the probability of zero rain $p_0(T)$ on the time scale T in a large multi-year data set based on observations from more than 300 tipping bucket gauges situated in south Florida, supplemented by information from a small number of Joss-Waldvogel impact disdrometers.

In a rather wide range of T between $T = 1$ min and 3 days, our results can be summarized by the simple stretched exponential formula $p_0(T) = \alpha_0 \exp[-(T/T_0)^\chi]$, where α_0 and χ are dimensionless parameters and T_0 is a characteristic time scale. For all the data sets studied the exponent χ is found to be in the narrow range 0.7 – 0.9. The parameter α_0 , which is determined by the behavior of $p_0(T)$ at small T , is found to be slightly less than unity and is estimated to be in the range 0.95 – 0.995 for our data sets. The characteristic time T_0 is found to vary considerably from one data set to another and appears to have a seasonal dependence. The probability of nonzero rain $p_1(T) = 1 - p_0(T)$ has an approximate power law scaling behavior with exponent χ only within a limited range of scales $(1 - \alpha_0)^{1/\chi} T_0 \ll T \ll T_0$. The quantity $1 - \alpha_0$ represents the limiting value of $p_1(T)$ for small T and the fact that it is nonzero signifies that the support of the rain field is not quite a set of measure zero as is sometimes supposed.

We also propose a simple probabilistic model to explain the observed behavior of $p_0(T)$ based on the premise that rainfall process has an intrinsic memory. The experimental fact that $\chi < 1$ reveals an interesting aspect of the rainfall process that can be interpreted as a phenomenon of “persistence of drought”, namely, the longer a zero rain period, the less likely it is for it to end.