

Future change and its uncertainty in atmospheric blocking

M. Matsueda (1), R. Mizuta (1), and S. Kusunoki (2)

(1) AESTO/MRI, Tsukuba, Japan (mimatsue@mri-jma.go.jp), (2) MRI, Tsukuba, Japan

In this study, the future change in the wintertime Northern Hemisphere atmospheric blocking was investigated using 20-km, 60-km, 120-km, and 180-km mesh Japan Meteorological Agency (JMA) / Meteorological Research Institute (MRI) Atmospheric General Circulation Model (AGCMs). We focused on the frequency and the duration of the blocking for the Northern Hemisphere winter (December – February) in the present-day (1979–2003), the near future (2015–2039), and the future (2075–2099) climates. Also, in order to estimate uncertainty in the future projection of the blocking, Sea surface temperature (SST) and initial value ensemble simulations were conducted using a 60-km mesh AGCM.

In the present-day climate, the 20-km model shows a good agreement with the Japanese reanalysis (JRA25) in respect to the Euro-Atlantic blocking frequency. The higher the horizontal resolution is, the better the blocking frequency is simulated. The 20-km model can simulate the long-lived blocking well, whereas the lower-resolution models cannot sufficiently simulate the long-lived blocking. On the other hand, the horizontal resolution might not be important for the simulation of the Pacific blocking. The 180-km model simulates the Pacific blocking frequency well, whereas the higher-resolution models tend to overestimate it.

In the near future climate, the Euro-Atlantic and the Pacific blocking frequencies are likely to decrease slightly. The decrease might depend on the climate sensitivity of AGCM. There is a possibility that the blocking frequencies do not change.

In the future climate, the Euro-Atlantic and the Pacific blocking frequencies are likely to decrease. In particular, the significant decreases tend to appear at the west of the peak of the Euro-Atlantic and the Pacific blocking frequencies. The ensemble simulations have revealed that the more the global warming proceeds, the more the Euro-Atlantic and the Pacific blocking frequencies decrease. The number of the Euro-Atlantic blocking decreases in all categories of durations, whereas that of the Pacific blocking decreases particularly in categories of long durations.