

Simulation of N_2O peak emissions on peat soils with SWAP-ANIMO

P.C. Stolk (1,2), R.H.A. Hendriks (2), C.M.J. Jacobs (2), H. Weststrate (3), and J. Duyzer (3)

(1) Earth System Science and Climate Change Group, Wageningen University, Wageningen, Netherlands (petra.stolk@wur.nl),
(2) Alterra, Wageningen University and Research Centre, Wageningen, Netherlands, (3) TNO, Utrecht, Netherlands

Nitrous oxide (N_2O) is a very strong greenhouse gas, with agricultural soils as its main anthropogenic source. Various management practices, like fertilization or tillage, can give rise to pulses of N_2O emissions. In spite of their short duration, in the order of a couple of days to weeks, these pulses can constitute major part of total annual nitrous oxide emission. Understanding, predicting and ultimately mitigating these pulses poses a considerable challenge. N_2O is mainly produced by nitrifiers and denitrifiers. These require different conditions with respect to aerobicity and available mineral N.

Simulation models offer a promising tool to test and further develop process knowledge on N_2O production and -emission. SWAP-ANIMO is a process oriented biogeochemical model, originally developed for the simulation of nitrate leaching, that has recently been extended with an N_2O module. It includes production and consumption of N_2O by denitrification, production of N_2O by nitrification and transport by diffusion and convection in the soil water and soil air.

Here we present the validation of N_2O surface flux simulations, with daily measurements of fluxes from grassland on peat in The Netherlands. As a first step to evaluate the simulation of the processes in the soil, we compare observed and simulated soil N_2O concentration profiles.