Geophysical Research Abstracts, Vol. 11, EGU2009-2915-3, 2009 EGU General Assembly 2009 © Author(s) 2009

Natural Gas Hydrates as CH_4 Source and CO_2 Sink - What do SO_2 Impurities do?

B. Beeskow-Strauch, J.M. Schicks, E. Spangenberg, and J. Erzinger (betti@gfz-potsdam.de)

The large amounts of gas hydrates stored in natural reservoirs are thought to be a promising future energy source. The recently discussed idea of methane extraction from these formations, together with the subsequent storage of CO_2 in form of gas hydrates is an elegant approach to bring forward.

A number of experiments have been performed on lab scale showing the replacement of CH_4 by CO_2 and vice versa. For instance, Graue and Kvamme (2006) demonstrated with Magnetic Resonance Images of core plug experiments the possibility of CH_4 extraction by using liquid CO_2 . Laser Raman investigations of Schicks et al. (2007) showed, on the other hand, the ineffectiveness and slowness of the CH_4 exchange reaction with gaseous CO_2 . After 120 hours, only 20% CH_4 were exchanged for CO_2 . Natural methane hydrates which include often higher hydrocarbons tend to be even more stable than pure methane hydrates (Schicks et al., 2006).

Contrary to lab conditions, industrial emitted CO_2 contains - despite much effort to clean it – traces of impurities. For instance, CO_2 emitted from the state-of-the-art Vattenfall Oxyfuel pilot plant in Schwarze Pumpe should reach a quality of >99.7% CO_2 but still contains small amounts of N_2 , Ar, O_2 , SO_x and NO_x (pers. comm. Dr. Rolland).

Here we present a microscopic and laser Raman study in a p-T range of 1 to 4 MPa and 271 to 280K focussing on CO_2 hydrate formation and CH_4 -exchange reaction in the presence of 1% SO_2 . The experiments have been performed in a small-scale cryocell.

The Raman spectra show that CO_2 and SO_2 occupy both large and small cages of the hydrate lattice. SO_2 occurs strongly enriched in the hydrate clathrate, compared to its concentration in the feed gas which causes a strong acidification of the liquid phase after hydrate dissociation.

Our study reveals that the hydrate formation rate from impure CO_2 is similar to that of pure CO_2 hydrate but that the stability of the CO_2 -SO₂-hydrate exceeds that of pure CO_2 hydrate.

The improved stability of impure CO₂ hydrate might also boost the exchange reaction with CH₄ hydrate.

These significant parameters - changes of hydrate stability and CO_2 - CH_4 exchange rate as well as the acidification of the environment - have to be considered in future concepts for CO_2 sequestration combined with CH_4 recovery.

Reference:

Graue, A., Kvamme, B. 2006. Conference Paper presented at the Offshore Technology Conference in Houston, Texas, U.S.A.

Schicks, J.M., Naumann, R., Erzinger, J., Hester, K.C., Koh, C.A. Sloan, E.D., 2006. Journal of Physical Chemistry, 110, 11468-11474

Schicks, J. M.; Spangenberg, E.; Erzinger, J. 2007. American Geophysical Union, Fall Meeting, abstract #OS12A-08