

Mineralization related to Alvand pluton in the Hamadan, western Iran

M.H. Salehi (1), E.A. Doosti (1), and V. Ahadnejad (2)

(1) Department of Geology, Faculty of Science, Tarbiat Moallem University of Tehran, Tehran, Iran, (2) University of Tehran, University College of Science, Department of Geology, Iran (ahadnejad@khayam.ut.ac.ir)

The Alvand (Hamadan) plutonic batholith is one of the largest plutonic bodies in the Sanandaj-Sirjan metamorphic belt. This complex is consist of mafic part (gabbro-diorite-tonalite), intermediate (granite-granodiorite porphyroids), and hololeucocratic granitoids. Previous studies have shown that S-type granite-granodiorites are mostly peraluminous and calc-alkaline; the gabbro-diorite-tonalite suite is mostly metaluminous and tholeiitic to calc-alkaline (Sepahi, 2008). High initial 87Sr - 86Sr ratios (0.7081 to 0.7115), low epsilon Nd values (-1.0 to -3.3), and peraluminous character reflects a different origin for the granites, possibly crustal sources (Ghalamghash et al, 2007). Aplite-pegmatite dikes are intruded in granitoide rocks, metamorphic rocks and the contact of Alvand granite with metamorphic rocks. The contact of Alvand granite with metamorphic rocks is sharp.

By using heavy mineral studies on the alluvium of Alvand complex, it is recognized 28 minerals amongst Scheelite, Cassiterite, Ilmenite, Zircon and Garnet. Different geostatistical studies such as variant, bivariant and multivariant studies have been done on rough data of heavy minerals. They showed normal concentration of gold in studied rocks and low enrichment of tin and tungsten.

The index of the ore elements average, frequency distribution criteria of elements, the ratio of elements index and multielements show that Alvand granite is barren. Mineralography studies did not recognized any tin and tungsten minerals. The grains of gold was recognized in some of the microscopic thin sections. Calcypyrotite is the most important ore mineral that is accompanied with oxides and iron carbonates.

The contacts of aplite-pegmatite dikes with granitoide rocks mostly are not prolific. For recognizing Scheelite, some samples of rocks studied by ultraviolet and few Scheelite is recognized in the samples. Some alteration zone observed in this area but they are not accompany with main mineralization. Although the expanded turmalinization has occurred but it is not seen any mineralization.

Unless some small part of Alvand complex (i.e. stibnite in the Faghireh area, Manijou and Aliani, 2000) and based on the main geochemical index, Alvand granitod pluton is classified as a barren type granite.

References:

Ghalamghash, J., Mirnejad, H., Rashid, H., Mohammadiha, K., Ghahraei-poor, M., Zakeri, M., 2007. Geochemistry of gabbro, granite and mafic enclaves of Alvand batholith and their origin. 25th conference of geosciences, Geological Survey of Iran.

Manijou, M., and Aliani, F., 2000. Stibnite mineralization in the Hamedan, west Iran. Mineral Deposits at the Beginning of the 21st Century: Proceedings of the Joint Sixth Biennial SGA-SEG Meeting, Krakow, Poland, 26-29 August 2001 By Adam Piestrzyński, Society for Geology Applied to Mineral Deposits, Society of Economic Geologists (U.S.) Published by Taylor & Francis. ISBN 9026518463, 9789026518461. 1148 pages.

Sepahi, Ali A, 2008. Typology and petrogenesis of granitic rocks in the Sanandaj-Sirjan metamorphic belt, Iran: with emphasis on the Alvand plutonic complex. *Neues Jahrbuch für Geologie Und Palaeontologie. Abhandlungen*, 2008; 247 (3), 295-312.