

Chemically-Resolved Volatility Measurements of Organic Aerosol from Different Sources

J.A. Huffman (1,2), K.S. Docherty (1), C. Mohr (1,3), I.M. Ulbrich (1), P.J. Ziemann (4), T.B. Onasch (5), and J.L. Jimenez (1)

(1) CIRES and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA, (2) now at Max Planck Institute for Chemistry, Mainz, Germany, (3) now at Paul Scherrer Institute, Villigen, Switzerland, (4) Air Pollution Research Center, University of California, Riverside, CA, USA, (5) Aerodyne Research, Inc., Billerica, MA, USA

A newly modified fast temperature-stepping thermodenuder (TD) was coupled to a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) for rapid quantification of chemically-resolved volatility of organic aerosols (OA) emitted from individual sources. The TD-AMS system was used to characterize primary OA (POA) from biomass burning, trash burning surrogates (paper and plastic), and meat cooking as well as chamber-generated secondary OA (SOA) from a-pinene and gasoline vapor. Almost all atmospheric models represent POA as non-volatile, with no allowance for evaporation upon heating or dilution, or condensation upon cooling. Our results indicate that all OAs observed show semi-volatile behavior and that most POAs are at least as volatile as SOA measured in urban environments. Biomass-burning OA (BBOA) exhibited a wide range of volatilities, but more often showed volatility similar to urban OA. Paper-burning resembles BBOA because of its high volatility and intermediate atomic oxygen-to-carbon (O/C) ratio, while meat-cooking OAs (MCOA) have consistently lower volatility than ambient OA. Chamber-generated SOA was significantly more volatile than urban SOA, challenging extrapolation of traditional laboratory volatility measurements to the atmosphere. Most OAs sampled show increasing O/C ratio and decreasing H/C (hydrogen-to-carbon) ratio with temperature, further indicating that more oxygenated OA components are less volatile.