

Temperature dependence of hexavalent Cr reduction by natural organic matter in Cr(VI)-doped latosol soil

Y.-L. Wei (1), H.-F. Hsieh (1), H. P. Wang (2,3)

(1) Department of Environmental Science and Engineering, Tunghai University, Taichung City, 407 Taiwan
(yulin@thu.edu.tw / (+)886 4 2359 6858), (2) Department of Environmental Engineering, National Cheng Kung University, Tainan City, Taiwan, (3) Sustainable Environmental Research Center, National Cheng Kung University, Tainan City, Taiwan

Cr([U+2165]) reduction in natural organic matter (NOM)-bearing Latosol soil was investigated under various heating conditions at $\leq 105^{\circ}\text{C}$. An enhanced Cr([U+2165]) reduction level has been observed for the reaction at higher temperature, as well as for the reaction in liquid media. Cr(OH)3 was determined by X-ray absorption spectroscopy (XAS) as the key chromium species after about 90% Cr(VI) reduction. Solid-state ^{13}C NMR results demonstrated that, after the Cr(VI) reduction, the aliphatic carbons, oxygenated aliphatic carbons, acetalic carbons, and carboxylic/carbonyl carbons of the NOM were dramatically oxidized; whereas most aromatic/phenolic carbons were quite resistant to the oxidation by Cr(VI). This study implies a potential remedy method by using the heat from industrial flue gas to chemically reduce Cr(VI) in NOM-bearing or organics-amended soils that has been contaminated with Cr(VI).