

Role of hydrogen and oxygen fugacity on incorporation of nitrogen and carbon in reduced magmas of the early Earth

A. A. Kadik (1) and Yu. A. Litvin (2)

(1) V. I. Vernadsky Institute of Geochemistry and Analytical Chemistry RAS, Geochemistry, Moscow, Russian Federation (kadik@geokhi.ru), (2) Institute of Experimental Mineralogy RAS. Chernogolovka, Moscow distr. Russia

Role of hydrogen and oxygen fugacity on incorporation of nitrogen and carbon in reduced magmas of the early Earth

A. A. Kadik (1) and Yu. A. Litvin (2), (1) V.I.Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS, Kosygin St. 19, Moscow 119991, Russia, (2) Institute of Experimental Mineralogy, RAS, Chernogolovka, Moscow distr. 142432, Russia kadik@geokhi.ru / 7-495-137-7200

In a series of experiments in the system Fe-bearing melt + molten Fe metallic phase + N+ H conducted at 4 GPa and 1550°C and logfO₂ from 2 to 4 below logfO₂ (IW), we have characterised the nature and quantified the abundance's of N- and H-compound dissolved in an model silicate melt (NaAlSi₃O₈ 80% wt +FeO 20% wt). Experiments were carried out in an anvil-with-hole apparatus. The technique of fO₂ buffering employed relies upon the diffusion of H₂ through Pt to achieve equal chemical potentials of H₂ in the inner Pt capsule and outer solid fO₂ buffer assembly in the presence of H₂O. The fO₂ imposed on the charge is controlled by the equilibrium between H₂ buffered externally, and the Fe-bearing melt. To create a low fO₂ in the experiments, 2, 3, 5 and 7 wt % of finely dispersed Si₃N₄ was added to the glass powder (NaAlSi₃O₈ 80% + FeO 20% wt). The initial Si₃N₄ was unstable under experimental conditions and was completely consumed according to the reactions: Si₃N₄(initial) + 3O₂ → 3SiO₂(melt) + 4N(melt) with the subsequent participation of nitrogen in reactions with hydrogen and components of silicate melts. The infrared and Raman spectroscopy of glasses indicates a remarkable feature of N-H interaction with a reduced silicate: an appreciable change in the mechanism of their dissolution with a decrease in fO₂. The most part of nitrogen reacts with hydrogen with formation of N-H complexes. The most likely nitrogen-bearing species is represented by NH₃ and NH₄⁺ group. Except for N-H complexes hydrogen is expressed under the oxidized form OH and H₂O. Some hydrogen is present in a melt in the molecular form. The amount of H and N dissolved in the glasses was measured by ion microprobe and microprobe analysis. Hydrogen content increases with decreasing fO₂ from 0.3 wt % at logfO₂(IW) = -2.2 to 0.4 wt % at logfO₂(IW) = -3.9. Nitrogen content increases with decreasing fO₂ from 0.5 wt% at logfO₂(IW)= -2.2 to 1.9 wt % at logfO₂(IW)= -3.9. It is suggested, that significant amounts of nitrogen, comparable to those estimated for the present-day mantle, could have been incorporated in the early Earth by dissolution in a magma ocean, under fO₂ conditions relevant to those prevailing during metal segregation.

The experimental results in the system model silicate melt (NaAlSi₃O₈ 80% wt +FeO 20% wt) + molten Fe metallic phase + C+ H conducted at 4 GPa and 1550°C and logfO₂ from 2 to 4 logfO₂ (IW) allow to assume that the formation of compounds with C-H-type bonds (e.g., H₂, CH₄ and other molecules with such a bond) should be expected in primary melts of the reduced mantle, together with oxidized H species (as the OH-group). The relationship between them substantially depends on fO₂.

We assume that the magmatic transport and chemical evolution of nitrogen, carbon and hydrogen during the reduced episode of early mantle evolution could be very much influenced by low fO₂ values in presence of the metallic Fe phase. The primary melting is a way of providing the formation of the reduced forms of nitrogen, carbon and hydrogen (H₂, CH₄, NH₃ together with H₂O, OH) in magmas of the early Earth.

Support: Prog. No 15 RAS, RFBR grant No 08-05-00377, ESD RAS project No 8.