Maximum Daily Discharge Prediction using Multi Layer Perceptron Network

M. Rezaian Zadeh (1), H. Abghari (2), N. van de Giesen (3), A. Nikian (4), and N. Niknia (5)

(1) MSc. student in Water Engineering, University of Shiraz, Iran. (mehdire61@Gmail.com), (2) Assistant Professor, Urmia University, Urmia, Iran. (Hiradab@Gmail.com) Fax: +98 (0)441 2770489, (3) Professor, TUDelft, Netherlands. (n.c.vandegiesen@Tudelft.nl) Fax: +31 (0)15 2787180, (4) MSc. student in Agricultural Machinery Engineering, College of Agriculture, Shiraz University. (ashkan.comp@yahoo.com), (5) MSc. student in Water Engineering, University of Shiraz, Iran. (nniknia@gmail.com) Fax: +98 (0) 5614448595

Prediction of maximum daily flow is essential for planning of water resources systems. This study presents the use of an Artificial Neural Network (ANN) to maximum daily flow prediction in the Khosrow Shirin watershed, in north-west Fars province in Iran. Precipitation from four meteorological stations was used to develop a Multi Layer Perceptron (MLP) optimized with the Levenberg-Marquardt (MLP_LM) training algorithm and using a tangent sigmoid activation function. Different methods to construct the input vectors were considered during models development. In the first method the precipitation signal is imported separately as input vectors for training. In the second method area-weighted precipitation and related Hydrographs were used in MLP development. In addition to precipitation, in the last model three inputs were used that were base on antecedent flows with one and two days time lag. The performance of each of these models was investigated with the root mean square errors (RMSE) and correlation coefficient (R2). The results show that the second method with weighted precipitation has higher prediction efficiency. R2 and RMSE of training and validation phase for third the model with weighted precipitation were 0.98 and 0.96, respectively. Addition of antecedent flow as input vector and use of weighted precipitation provide better results in maximum daily flow prediction.

Keywords: Multi Layer Perceptron, Maximum Daily Flow Prediction, Weighted Precipitation, Antecedent flow, Levenberg-Marquardt Algorithm.