

Extraction of copper in a contaminated soil onto chabazite

P.-H. Liao (1), H. Paul Wang (1,2), M.-C. Hsiao (3), Edward M. Eyring (4), C.-H. Huang (1), and C.-J. G. Jou (5)
(1) Naitonal Cheng Kung University, Department of Environmental Engineering, Tainan, Taiwan (wanghp@mail.ncku.edu.tw, +886-6-2752790), (2) Sustainable Environmental Research Center, National Cheng Kung University, Tainan, Taiwan, (3) Department of Environmental Engineering, Kun Shan University, Tainan City, Taiwan, (4) Department of Chemistry, University of Utah, Salt lake City, USA, (5) Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung, Taiwan

Copper in a contaminated soil nearby a printed-circuit board waste recycling plant has been extracted onto a micro-porous molecular sieve (chabazite). The chabazite supported CuO can be used as a chemical looping combustion (CLC) oxygen carrier for CO₂ capture. Speciation of copper in the contaminated soil and on the chabazite during CLC has been studied by X-ray absorption near edge structure (XANES) and X-ray absorption fine structure (EXAFS) spectroscopy. By XANES, it is found that about 90% of copper (mainly Cu²⁺) in the contaminated soil can be extracted and adsorbed on the chabazite, in which CuO can be formed on the chabazite after calcination at 773 K for two hours. The EXAFS data show that copper in the soil and chabazite possesses Cu-O bond distances of 1.96 and 1.95 Å, respectively and coordination numbers (CNs) of 1-3. After CLC, CuO on chabazite has been reduced to Cu with a C-C bond distance of 2.4 Å and a CN of 8. This work also exemplifies the utilization of EXAFS and XANES to reveal the migration path of copper between a contaminated soil and a molecular sieve and interconversion of Cu-CuO in the CLC process.