

Quantifying N₂ losses via denitrification from different terrestrial ecosystems using of a gas-flow core method

K. Butterbach-Bahl (1), M. Dannenmann (1), C. Scheer (1), G. Willibald (1), R. Wang (2), and X. Zheng (2)

(1) Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU),
Garmisch-Partenkirchen, Germany (klaus.butterbach@imk.fzk.de), (2) State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, PR China

Microbial respiratory reduction of nitrous oxide (N₂O) to dinitrogen (N₂) via denitrification plays a key role within the global N-cycle since it is the most important process for converting reactive nitrogen back into inert molecular N₂. However, due to methodological constraints, we still lack a comprehensive, quantitative understanding of denitrification rates and controlling factors across various ecosystems. In order to quantify N₂-emissions from terrestrial ecosystems we developed and applied a measuring system that allows to simultaneously determine N₂- and N₂O-emissions from intact soil cores with high accuracy (detection limit approx. 10 µg N m⁻² h⁻¹ for N₂ and <1 µg for N₂O). The measuring technique is based on a gas-flow core method and soil air as well as headspace air are replaced with an artificial atmosphere in which N₂ is substituted by He (Butterbach-Bahl et al., 2002). This system was used in a series of studies, e.g. beech forest soils at Tuttlingen, Germany (Dannenmann et al., 2008), soils from irrigated cotton fields, Aral Sea Basin, Uzbekistan (Scheer et al., 2008), or rice paddy soils from Jiangdu province, China (unpublished data). The N₂ fluxes observed are often huge, exceeding N₂O emissions by a factor of 2-200. Annual N₂ losses for the investigated sites were 7-14 kg N₂-N ha⁻¹ yr⁻¹ at the Höglwald Forest, Germany (spruce and beech) (Butterbach-Bahl et al., 2008), 2-10 kg for pine forests in lowlands of North Germany, 14-24 kg N₂-N ha⁻¹ yr⁻¹ for a beech forest on limestone (thinned plots up to 94 kg N₂-N ha⁻¹ yr⁻¹) at Tuttlingen, Germany, or 24- 175 kg N₂-N ha⁻¹ yr⁻¹ for irrigated and heavily fertilised cotton in Uzbekistan. Overall the results of this study show that the N₂:N₂O ratio is crucial in the regulation of N₂O fluxes of the investigated soil and that reliable estimates of N₂ are an indispensable prerequisite for accurately calculating N balances for the investigated ecosystem and very likely for many other terrestrial upland ecosystems as well.

References

Butterbach-Bahl K., Willibald G., Papen H., 2002, Soil core method for direct simultaneous determination of N₂ and N₂O emissions from forest soils. *Plant and Soil*, 240, 105-116.

Dannenmann M., Butterbach-Bahl K., Gasche R., Willibald G., Papen H., 2008, Dinitrogen emissions and the N₂:N₂O emission ratio of a Rendzic Leptosol as influenced by pH and forest thinning. *Soil Biol. Biochem.* 40, 2317-2323.

Dittert K., Lampe C., Gasche R., Butterbach-Bahl K., Wachendorf M., Papen H., Sattelmacher B., Taube F., 2005, Short-term effects of single or combined application of mineral N fertilizer and cattle slurry on the fluxes of the radiatively active trace gases from grassland soil. *Soil Biol. Biochem.* 37, 1665-1674.

Scheer C., Wassmann R., Butterbach-Bahl K., Lamers J.P.A., Martius C., 2008, The Relationship between N₂O, NO, and N₂ fluxes from Fertilized and Irrigated Dryland Soils of the Aral Sea Basin, Uzbekistan. *Plant and Soil*, DOI 10.1007/s11104-008-9728-8.