

Impact of the heatwave in 2003 on the summer CH₄ and N₂O budget of a spruce forest ecosystem: A four-year comparison

M. Lamers (1), S. Fiedler (1), H.F. Jungkunst (2), K. Stahr (1), and T. Streck (1)

(1) Institute of Soil Science and Land Evaluation, University of Hohenheim, Germany (mlamers@uni-hohenheim.de), (2) Institute of Geography, Department of Landscape Ecology, University of Göttingen, Germany

Both CH₄ and N₂O reduction and oxidation are highly sensitive to variation in soil moisture. Significant changes of net CH₄ and total N₂O fluxes from soils can therefore be expected to accompany redistribution for precipitation in the course of climate change where more extreme events are predicted for the future. The extreme summer drought in 2003 offered the unique opportunity to study the impact of such events on the emission of greenhouse gases, such as methane or nitrous oxide, under field conditions. The main objective of the present study was to evaluate the impact of the summer drought in 2003 on the net methane and nitrous oxide budget of a spruce forest ecosystem (South-West Germany) with large variation in soil drainage. During the summers of 2000-2004 we measured net CH₄ and N₂O fluxes (bi)-weekly using the closed-chamber technique for six different soil types ranging from well-aerated Cambisols to poorly drained Gleysols and a wet Histosol.

With regard to CH₄ the extreme summer draught (1) did not elevate net CH₄-sink function of soils, but (2) highly reduced net CH₄-source strength and (3) reversed the net CH₄ source of the investigated catchment into a sink. In all four summers investigated, net ecosystem exchange of CH₄ was found only in the hydromorphic soils but not in the dominant well-aerated soils. This highlighted the key role of hydromorphic soils for the investigated pedodiverse system. With regard to N₂O the summer draught in 2003 significantly reduced N₂O emissions at least for the Humic Gleysol and the Sapric Histosol and hence markedly reduced the net N₂O source strength of the investigated ecosystem.