

{Survey on Caspian sea-level fluctuation using Magnetic Susceptibility of deposits}

S. haghani (1), A. Amini (2), S. Leroy (3), H. Alizadeh-Lahijani (4), and V. Tavakoli (5)

(1) School of Geology, University of Tehran, Tehran, Iran (s_haghani@ yahoo.com), , (2) School of Geology, University of Tehran, Tehran, Iran (ahamini@khayam.ut.ac.ir), (3) Institute for the Environment, Brunel University, West London, UK (Suzanne.leroy@brunel.ac.uk), (4) Iranian National Center of Oceanography, Marine geology (lahijani@inco.ac.ir), (5) School of Geology, University of Tehran, Tehran, Iran (vtavakol@khayam.ut.ac.ir)

Cores with around 2m long were taken at 7 stations (50-410 m water depths) in the offshore regions of the southern Caspian Sea and analyzed for particle size, carbonate and organic matter content, radionuclide dating and magnetic susceptibility. The sediments that marked by alternation of black and gray layers, ranged from fine silt to clay with moderately enriched organic matter levels (avg. 2.5%). The carbonate materials are the main components with average of 18.24%. Based on radionuclide dating, sedimentation rate estimated 1.6 cm per year. In general, variations in magnetic susceptibility (MS) magnitude within sequence represent changes in the rate of detrital fractions supply to the marine system that controlled by sea-level fluctuation. In this survey on sea-level fluctuation has been done using magnetic susceptibility in sediments. Results from this study indicate that MS as an affective approach offer insights into the general character of sea level fluctuation.