

On multimode computations for laterally-heterogeneous structures with variable surface curvature: the extended Himalaya

G. GURUNG (1), F. SCHWAB (2), and B. G. JO (1)

(1) Department of Earth and Environmental Science, Chonbuk National University, Jeonju, Republic of Korea 561-756 (moostang@chonbuk.ac.kr), (2) Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90095-1567, USA

In 3-D seismic mapping, complete multimode-multistructure computations are now feasible for laterally heterogeneous structures with variable surface curvature; specifically, for a 10×10 km grid of surface locations with surface azimuths $0(11.25)348.75^\circ$ treated at each location, surface dimensions of 2500×3100 km, depths from surface to 800 km, and frequencies $0.0005(0.0005)0.1000$ Hz. The fundamental assumption for modal treatment of a 3-D varying structure with variable curvature, is that each triplet (frequency, mode number, surface azimuthal direction of propagation) at a location can be assigned its own specific laterally-homogeneous structure and radius of surface curvature. The extent of the true structure used for this is defined by the modal depth of penetration D , and the vertical cylinder with diameter S equal to 1.5 times this depth of penetration. With an initial 3-D structure specified, “static computations” generate a complete (torsional and spheroidal) multimode specification for each location. Standardized representations for this specification are critical to the 3-D mapping procedure: a compact, eight-parameter graphical representation is needed to monitor the network output, location-by-location. For this we use the appropriate 32 modes of frequency-dependent physical phase velocity C_1 , attenuation parameter Q_c , physical group velocity U_1 , energy-density integral I , radius of surface curvature R , surface sensing-circle diameter S , depth of penetration D , and the ratio S/D . The overall feasibility of the static computations was demonstrated previously. Here, three phases of the these computations remain to be presented: (1) In applying the fundamental assumption during the computational procedures, we must iterate over the ratio of input S and output D to satisfy the fundamental assumption to the level $S/D = 1.500 \pm 0.004$, or to 3.3 sig. fig.. This then ensures the computational accuracies: 5.0 sig. fig. in C_1 , 4.4 sig. fig. in Q_c , 3.7 sig. fig. in U_1 , 3.8 sig. fig. in I , and 4.2 sig. fig. in R . (2) With $S/D = 1.500 \pm 0.004$, computed R is good to 4.2 sig. fig.; but to obtain the desired 5.0 sig. fig. in C_1 the *sufficient* condition on R is 5.0 sig. fig. Fortunately, the corresponding *necessary* conditions are far less stringent. These depend upon the ratio D/R , and it is only for $D/R \approx 1$ that R needs to be good to 5.0 sig. fig.; but for the upper 800 km beneath the extended Himalaya, $0.04 < D/R < 0.14$ and we need only $3.7 <$ accuracy of $R < 4.0$ sig. fig. (3) The group velocity on a laterally heterogeneous structure with variable surface curvature, depends upon $dR/d\omega$ and $dS/d\omega$. If these frequency derivatives are ignored, the accuracy of computed U_1 can fall to 2.4 sig. fig. (torsional modes) and 2.7 sig. fig. (spheroidal modes).