

Cenozoic ice volume and temperature simulations with a 1-D ice-sheet model

B. de Boer (1), R. S. W. van de Wal (1), R. Bintanja (2), L. J. Lourens (3), and E. Tuenter (1)

(1) Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, Netherlands (b.deboer@uu.nl), (2) Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands, (3) Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands

Ice volume and temperature for the past 35 Million years is investigated with a 1-D ice-sheet model, simulating ice-sheets on both hemispheres. The simulations include two continental Northern Hemisphere (NH) ice-sheets representative for glaciation on the two major continents, i.e. Eurasia (EAZ) and North America (NAM). Antarctic glaciation is simulated with two separate ice-sheets, respectively for West and East Antarctica. The surface air temperature is reconstructed with an inventive inverse procedure, forced with benthic $\delta^{18}\text{O}$ data. The procedure linearly relates the temperature to the difference between the modelled and observed marine $\delta^{18}\text{O}$ 100 years later. The derived temperature, representative for the NH, is used to run the ice-sheet model over 100 years, to obtain a mutually consistent record of marine $\delta^{18}\text{O}$, sea level and temperature for the last 35 Ma of the Cenozoic. For Northern Hemispheric glaciations results are good compared to similar simulations performed with a much more comprehensive 3-D ice-sheet model. On average, differences are only 1.9 °C for temperature and 6.1 m for sea level. Results with ice-sheets on both hemispheres are very similar. Most notably, the reconstructed ice volume as function of temperature shows a transition from climate dominated by Antarctic ice volume variation towards NH ice-sheets controlled climate. The transition period falls within the range of interglacials (about -2 to +8 °C with respect to present day) and is thus characterized by lower ice volume changes per °C. The relationship between temperature, sea level and $\delta^{18}\text{O}$ input is tested with an equilibrium experiment, which results in a linear and symmetric relationship for both temperature and total sea level, providing limited evidence for hysteresis, though transient behaviour is still important. Furthermore results show a rather good comparison with other simulations of Antarctic ice volume and observed sea level and deep-sea temperature.