

First detection of a seasonality of stratospheric CO above mid-latitudes via solar FTIR measurements. Analysis of one decade of observations at the NDACC Primary Station Zugspitze

T. Borsdorff, R. Sussmann, and M. Rettiger

Research Center Karlsruhe, IMK-IFU, Garmisch-Partenkirchen, Germany (Tobias.Borsdorff@imk.fzk.de)

Model studies revealed that stratospheric CO exhibits considerable seasonal and latitudinal variations caused by the competition between downward transport from the thermospheric production region and photochemical loss processes. A sharp latitudinal gradient with highest abundances at the North Pole was found which implies that the mid-latitude region can exhibit strong enhancements of stratospheric CO under conditions of large-scale planetary wave activity displacing CO enriched vortex air from North to South. Unfortunately, until now there are not enough continuous long-term measurements of stratospheric CO at mid-latitudes to prove this assumption.

Velazco et al. [2007] reported ground-based FTIR measurements of stratospheric CO partial columns from several sites in the Arctic, northern and southern mid-latitudes, and Antarctica. Unfortunately, this study concluded that, generally, the mid-latitude stations show no significant annual variability of stratospheric CO columns. However, already early microwave observations indicated that stratospheric CO is about twice as large in mid-latitude winter as in summer [Clancy et al., 1982]. Obviously, there was a technical difficulty with the FTIR inversion of mid-latitude mesospheric CO in the early study by Velazco et al. [2007].

It is one aim of this paper to present a solution to this problem. Therefore, this paper describes an improved retrieval approach for ground-based FTIR stations, that is capable to derive a significant seasonal cycle of stratospheric CO at mid-latitudes. Coincident measurements at Zugspitze (2964 m a.s.l.) and Garmisch (744 m a.s.l.) show perfect agreement ($R = 0.94$) which proves that the new retrieval approach is not limited to high altitude stations, and is thus applicable to all mid-latitude stations. The first long-term series of stratospheric CO at mid-latitudes (42.42°N, 10.98°E) derived from ground-based FTIR spectrometry is presented (1999 to 2008). Between November and April the monthly mean time series shows column enhancements by a factor of 2.2 relative to the summer minimum of $1.64 \times 10^{16} \text{ cm}^{-2}$ with a maximum of $3.63 \times 10^{16} \text{ cm}^{-2}$ in February and strong year-to-year variability of up to 32% (1 sigma). The seasonality agrees very well with the WACCM model [Garcia et al., 2007] which, however, can not reproduce measured year-to-year variability. Pronounced short time enhancements (duration of 1 to 3 days) are observed, which during winter exceed the monthly-mean background seasonality by up to 276 %. Comparison with WACCM and FTIR measurements at high-latitudes [Jones et al., 2007] reveal, that these enhancements reflect inner vortex conditions and are due to transport by planetary waves.

References

Clancy, R. T., D. O. Muhleman and G. L. Berge (1982), Microwave spectra of terrestrial mesospheric CO, *J. Geophys. Res.*, 87, 5009 – 5014.

Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi (2007), Simulation of secular trends in the middle atmosphere, 1950–2003, *J. Geophys. Res.*, 112, D09301, doi: 10.1029/2006JD007485.

Jones, N. B., Y. Kasai, E. Dupuy, Y. Murayama, J. Urban, B. Barret, M. Sinnhuber, A. Kagawa, T. Koshiro, P. Ricaud, and D. Murtagh (2007), Stratospheric CO measured by a ground-based Fourier Transform Spectrometer over Poker Flat, Alaska: Comparison with Odin/SMR and a 2-D model, *J. Geophys. Res.*, 112,

D20303, doi: 10.1029/2006JD007916.

Velazco, V., S. W. Wood, M. Sinnhuber, I. Kramer, N. B. Jones, Y. Kasai, J. Notholt, T. Warneke, T. Blumenstock, F. Hase, F. J. Murcray, and O. Schrems (2007), Annual variation of strato-mesospheric carbon monoxide measured by ground-based Fourier transform infrared spectrometry, *Atmos. Chem. Phys.*, 7, 1305–1312.