

Aerosol Mass Spectrometric Investigations of the formation of SOA from NO₃ + Isoprene, Limonene, and β -Pinene Reactions

A. A. Mensah, A. Kiendler-Scharr, and the NO₃ Intercomparison (1-3) Team
Research Center Juelich, ICG 2, Juelich, Germany

We present aerosol mass spectrometric (AMS) results of NO₃ oxidation experiments in the atmospheric simulation chamber at Research Centre Juelich. Three volatile organic compounds (VOCs) of biogenic origin, isoprene, limonene and β -pinene, reacted separately with NO₃ at atmospheric relevant conditions. Initial VOC concentrations were between 10 ppb and 15 ppb and the NO₃ concentrations did not exceed 100 ppb. Aerosol particle mass yields ranged from 10% for isoprene to \sim 50% for β -pinene. We identify significant fractions of the produced SOA as organic nitrate compounds. The comparison of AMS results to results from Thermal Dissociation – Laser Induced Fluorescence (TD-LIF) shows a high correlation of aerosol particle mass evolution with gas phase organic nitrate formation. We will present specific mass spectrometric features of the SOA formed by NO₃ oxidation of monoterpenes with focus on high resolution mass spectral results. Furthermore, we will discuss the atmospheric relevance of NO₃ initiated SOA formation from biogenic VOC.