

Conditional PDFs of concentrations for mixing-controlled reactive transport in heterogeneous aquifers

D. Fernandez-Garcia (1), X. Sanchez-Vila (1), and A. Guadagnini (2)

(1) Universidad Politecnica de Catalunya, Enginyeria del Terreny, Barcelona, Spain (daniel.fernandez.g@upc.edu), (2) Politecnico di Milano, Dipartimento di Ingegneria Idraulica, Ambientale, Infrastrutture Viarie, Rilevamento, Milan, Italy

Transport of reactive species in the subsurface is driven by mixing processes. Whenever all reactions can be considered in chemical instantaneous equilibrium, a multiespecies reactive transport problem can be fully defined in terms of mixing driven conservative quantities, termed components, and the spatio-temporal distribution of reaction rates. Mixing itself is caused by local dispersion. We investigate the parameters controlling reaction rates and their uncertainty in a randomly stratified heterogeneous aquifer. To achieve this, we provide a mathematical framework to evaluate the probability density function (pdf) of spatio-temporal distributions of concentrations of reactive solutes (and associated reaction rates) evolving in a randomly heterogeneous aquifer. By taking advantage of the procedure of De Simoni et al. [2005, 2007] to deconstruct the reactive transport problem into the analysis of a conservative transport process and the solution of a chemistry-related problem, we ultimately obtain a partial differential equation for the (conditional) pdf of conservative aqueous species, which is derived for a particular case.